/usr/include/InsightToolkit/Review/itkOptImageToImageMetric.h is in libinsighttoolkit3-dev 3.20.1+git20120521-6build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 | /*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: itkOptImageToImageMetric.h
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkOptImageToImageMetric_h
#define __itkOptImageToImageMetric_h
#include "itkSingleValuedCostFunction.h"
#include "itkImageBase.h"
#include "itkTransform.h"
#include "itkInterpolateImageFunction.h"
#include "itkExceptionObject.h"
#include "itkGradientRecursiveGaussianImageFilter.h"
#include "itkSpatialObject.h"
#include "itkBSplineDeformableTransform.h"
#include "itkCentralDifferenceImageFunction.h"
#include "itkCovariantVector.h"
#include "itkMultiThreader.h"
#include "itkOptBSplineInterpolateImageFunction.h"
namespace itk
{
/** \class ImageToImageMetric
* \brief Computes similarity between regions of two images.
*
* This Class is templated over the type of the two input images.
* It expects a Transform and an Interpolator to be plugged in.
* This particular class is the base class for a hierarchy of
* similarity metrics.
*
* This class computes a value that measures the similarity
* between the Fixed image and the transformed Moving image.
* The Interpolator is used to compute intensity values on
* non-grid positions resulting from mapping points through
* the Transform.
*
*
* \ingroup RegistrationMetrics
*
*/
template <class TFixedImage, class TMovingImage>
class ITK_EXPORT ImageToImageMetric
: public SingleValuedCostFunction
{
public:
/** Standard class typedefs. */
typedef ImageToImageMetric Self;
typedef SingleValuedCostFunction Superclass;
typedef SmartPointer<Self> Pointer;
typedef SmartPointer<const Self> ConstPointer;
/** Type used for representing point components */
typedef typename Superclass::ParametersValueType CoordinateRepresentationType;
/** Run-time type information (and related methods). */
itkTypeMacro(ImageToImageMetric, SingleValuedCostFunction);
/** Type of the moving Image. */
typedef TMovingImage MovingImageType;
typedef typename TMovingImage::PixelType MovingImagePixelType;
typedef typename MovingImageType::ConstPointer MovingImageConstPointer;
/** Type of the fixed Image. */
typedef TFixedImage FixedImageType;
typedef typename TFixedImage::PixelType FixedImagePixelType;
typedef typename FixedImageType::ConstPointer FixedImageConstPointer;
typedef typename FixedImageType::RegionType FixedImageRegionType;
/** Constants for the image dimensions */
itkStaticConstMacro(MovingImageDimension,
unsigned int,
TMovingImage::ImageDimension);
itkStaticConstMacro(FixedImageDimension,
unsigned int,
TFixedImage::ImageDimension);
/** Type of the Transform Base class */
typedef Transform<CoordinateRepresentationType,
itkGetStaticConstMacro(MovingImageDimension),
itkGetStaticConstMacro(FixedImageDimension)>
TransformType;
typedef typename TransformType::Pointer TransformPointer;
typedef typename TransformType::InputPointType InputPointType;
typedef typename TransformType::OutputPointType OutputPointType;
typedef typename TransformType::ParametersType TransformParametersType;
typedef typename TransformType::JacobianType TransformJacobianType;
/** Index and Point typedef support. */
typedef typename FixedImageType::IndexType FixedImageIndexType;
typedef typename FixedImageIndexType::IndexValueType FixedImageIndexValueType;
typedef typename MovingImageType::IndexType MovingImageIndexType;
typedef typename TransformType::InputPointType FixedImagePointType;
typedef typename TransformType::OutputPointType MovingImagePointType;
typedef std::vector<FixedImageIndexType> FixedImageIndexContainer;
/** Type of the Interpolator Base class */
typedef InterpolateImageFunction< MovingImageType,
CoordinateRepresentationType >
InterpolatorType;
/** Gaussian filter to compute the gradient of the Moving Image */
typedef typename NumericTraits<MovingImagePixelType>::RealType
RealType;
typedef CovariantVector<RealType,
itkGetStaticConstMacro(MovingImageDimension)>
GradientPixelType;
typedef Image<GradientPixelType,
itkGetStaticConstMacro(MovingImageDimension)>
GradientImageType;
typedef SmartPointer<GradientImageType> GradientImagePointer;
typedef GradientRecursiveGaussianImageFilter< MovingImageType,
GradientImageType >
GradientImageFilterType;
typedef typename GradientImageFilterType::Pointer GradientImageFilterPointer;
typedef typename InterpolatorType::Pointer InterpolatorPointer;
/** Type for the mask of the fixed image. Only pixels that are "inside"
this mask will be considered for the computation of the metric */
typedef SpatialObject< itkGetStaticConstMacro(FixedImageDimension) >
FixedImageMaskType;
typedef typename FixedImageMaskType::Pointer FixedImageMaskPointer;
typedef typename FixedImageMaskType::ConstPointer FixedImageMaskConstPointer;
/** Type for the mask of the moving image. Only pixels that are "inside"
this mask will be considered for the computation of the metric */
typedef SpatialObject< itkGetStaticConstMacro(MovingImageDimension) >
MovingImageMaskType;
typedef typename MovingImageMaskType::Pointer MovingImageMaskPointer;
typedef typename MovingImageMaskType::ConstPointer MovingImageMaskConstPointer;
/** Type of the measure. */
typedef typename Superclass::MeasureType MeasureType;
/** Type of the derivative. */
typedef typename Superclass::DerivativeType DerivativeType;
/** Type of the parameters. */
typedef typename Superclass::ParametersType ParametersType;
/** Connect the Fixed Image. */
itkSetConstObjectMacro( FixedImage, FixedImageType );
/** Get the Fixed Image. */
itkGetConstObjectMacro( FixedImage, FixedImageType );
/** Connect the Moving Image. */
itkSetConstObjectMacro( MovingImage, MovingImageType );
/** Get the Moving Image. */
itkGetConstObjectMacro( MovingImage, MovingImageType );
/** Connect the Transform. */
itkSetObjectMacro( Transform, TransformType );
/** Get a pointer to the Transform. */
itkGetConstObjectMacro( Transform, TransformType );
/** Connect the Interpolator. */
itkSetObjectMacro( Interpolator, InterpolatorType );
/** Get a pointer to the Interpolator. */
itkGetConstObjectMacro( Interpolator, InterpolatorType );
/** Get the number of pixels considered in the computation. */
unsigned long GetNumberOfMovingImageSamples( void )
{
return this->GetNumberOfPixelsCounted();
}
itkGetConstReferenceMacro( NumberOfPixelsCounted, unsigned long );
/** Set the region over which the metric will be computed */
void SetFixedImageRegion( const FixedImageRegionType reg );
/** Get the region over which the metric will be computed */
itkGetConstReferenceMacro( FixedImageRegion, FixedImageRegionType );
/** Set/Get the moving image mask. */
itkSetObjectMacro( MovingImageMask, MovingImageMaskType );
itkSetConstObjectMacro( MovingImageMask, MovingImageMaskType );
itkGetConstObjectMacro( MovingImageMask, MovingImageMaskType );
/** Set/Get the fixed image mask. */
itkSetObjectMacro( FixedImageMask, FixedImageMaskType );
itkSetConstObjectMacro( FixedImageMask, FixedImageMaskType );
itkGetConstObjectMacro( FixedImageMask, FixedImageMaskType );
/** Set the fixed image indexes to be used as the samples when
* computing the match metric */
void SetFixedImageIndexes( const FixedImageIndexContainer & indexes );
void SetUseFixedImageIndexes( bool useIndex );
itkGetConstReferenceMacro( UseFixedImageIndexes, bool );
/** Set/Get number of threads to use for computations. */
void SetNumberOfThreads( unsigned int numberOfThreads );
itkGetConstReferenceMacro( NumberOfThreads, unsigned int );
/** Set/Get gradient computation. */
itkSetMacro( ComputeGradient, bool );
itkGetConstReferenceMacro( ComputeGradient, bool );
itkBooleanMacro(ComputeGradient );
/** Computes the gradient image and assigns it to m_GradientImage */
virtual void ComputeGradient( void );
/** Get Gradient Image. */
itkGetConstObjectMacro( GradientImage, GradientImageType );
/** Set the parameters defining the Transform. */
void SetTransformParameters( const ParametersType & parameters ) const;
/** Return the number of parameters required by the Transform */
unsigned int GetNumberOfParameters( void ) const
{
return m_Transform->GetNumberOfParameters();
}
/** Initialize the Metric by making sure that all the components
* are present and plugged together correctly */
virtual void Initialize( void ) throw ( ExceptionObject );
/** Initialize the components related to supporting multiple threads */
virtual void MultiThreadingInitialize( void ) throw ( ExceptionObject );
/** Number of spatial samples to used to compute metric
* This sets the number of samples. */
virtual void SetNumberOfFixedImageSamples( unsigned long numSamples );
itkGetConstReferenceMacro( NumberOfFixedImageSamples, unsigned long );
/** Number of spatial samples to used to compute metric
* This sets the number of samples. */
void SetNumberOfSpatialSamples( unsigned long num )
{
this->SetNumberOfFixedImageSamples( num );
}
unsigned long GetNumberOfSpatialSamples( void )
{
return this->GetNumberOfFixedImageSamples();
}
/** Minimum fixed-image intensity needed for a sample to be used in the
* metric computation */
void SetFixedImageSamplesIntensityThreshold( const FixedImagePixelType & thresh );
itkGetConstReferenceMacro( FixedImageSamplesIntensityThreshold, FixedImagePixelType );
void SetUseFixedImageSamplesIntensityThreshold( bool useThresh );
itkGetConstReferenceMacro( UseFixedImageSamplesIntensityThreshold, bool );
/** Select whether the metric will be computed using all the pixels on the
* fixed image region, or only using a set of randomly selected pixels.
* This value override IntensityThreshold, Masks, and SequentialSampling. */
void SetUseAllPixels( bool useAllPixels );
void UseAllPixelsOn( void )
{
this->SetUseAllPixels( true );
}
void UseAllPixelsOff( void )
{
this->SetUseAllPixels( false );
}
itkGetConstReferenceMacro( UseAllPixels, bool );
/** If set to true, then every pixel in the fixed image will be scanned to
* determine if it should be used in registration metric computation. A
* pixel will be chosen if it meets any mask or threshold limits set. If
* set to false, then UseAllPixels will be set to false. */
void SetUseSequentialSampling( bool sequentialSampling );
itkGetConstReferenceMacro( UseSequentialSampling, bool );
/** Reinitialize the seed of the random number generator that selects the
* sample of pixels used for estimating the image histograms and the joint
* histogram. By nature, this metric is not deterministic, since at each run
* it may select a different set of pixels. By initializing the random number
* generator seed to the same value you can restore determinism. On the other
* hand, calling the method ReinitializeSeed() without arguments will use the
* clock from your machine in order to have a very random initialization of
* the seed. This will indeed increase the non-deterministic behavior of the
* metric. */
void ReinitializeSeed();
void ReinitializeSeed( int seed );
/** This boolean flag is only relevant when this metric is used along
* with a BSplineDeformableTransform. The flag enables/disables the
* caching of values computed when a physical point is mapped through
* the BSplineDeformableTransform. In particular it will cache the
* values of the BSpline weights for that points, and the indexes
* indicating what BSpline-grid nodes are relevant for that specific
* point. This caching is made optional due to the fact that the
* memory arrays used for the caching can reach large sizes even for
* moderate image size problems. For example, for a 3D image of
* 256^3, using 20% of pixels, these arrays will take about 1
* Gigabyte of RAM for storage. The ratio of computing time between
* using the cache or not using the cache can reach 1:5, meaning that
* using the caching can provide a five times speed up. It is
* therefore, interesting to enable the caching, if enough memory is
* available for it. The caching is enabled by default, in order to
* preserve backward compatibility with previous versions of ITK. */
itkSetMacro(UseCachingOfBSplineWeights,bool);
itkGetConstReferenceMacro(UseCachingOfBSplineWeights,bool);
itkBooleanMacro(UseCachingOfBSplineWeights);
typedef MultiThreader MultiThreaderType;
/** Get the Threader. */
itkGetConstObjectMacro( Threader, MultiThreaderType );
const TransformPointer* GetThreaderTransform()
{
return m_ThreaderTransform;
}
protected:
ImageToImageMetric();
virtual ~ImageToImageMetric();
void PrintSelf(std::ostream& os, Indent indent) const;
/** \class FixedImageSamplePoint
* A fixed image spatial sample consists of the fixed domain point
* and the fixed image value at that point. */
/// @cond
class FixedImageSamplePoint
{
public:
FixedImageSamplePoint()
{
point.Fill(0.0);
value = 0;
valueIndex = 0;
}
~FixedImageSamplePoint() {};
public:
FixedImagePointType point;
double value;
unsigned int valueIndex;
};
/// @endcond
bool m_UseFixedImageIndexes;
FixedImageIndexContainer m_FixedImageIndexes;
bool m_UseFixedImageSamplesIntensityThreshold;
FixedImagePixelType m_FixedImageSamplesIntensityThreshold;
/** FixedImageSamplePoint typedef support. */
typedef std::vector<FixedImageSamplePoint> FixedImageSampleContainer;
/** Uniformly select a sample set from the fixed image domain. */
virtual void SampleFixedImageRegion( FixedImageSampleContainer & samples) const;
virtual void SampleFixedImageIndexes( FixedImageSampleContainer &
samples) const;
/** Gather all the pixels from the fixed image domain. */
virtual void SampleFullFixedImageRegion( FixedImageSampleContainer &
samples) const;
/** Container to store a set of points and fixed image values. */
FixedImageSampleContainer m_FixedImageSamples;
unsigned long m_NumberOfParameters;
mutable ParametersType m_Parameters;
unsigned long m_NumberOfFixedImageSamples;
//m_NumberOfPixelsCounted must be mutable because the const
//thread consolidation functions merge each threads valus
//onto this accumulator variable.
mutable unsigned long m_NumberOfPixelsCounted;
FixedImageConstPointer m_FixedImage;
MovingImageConstPointer m_MovingImage;
/** Main transform to be used in thread = 0 */
TransformPointer m_Transform;
/** Copies of Transform helpers per thread (N-1 of them, since m_Transform
* will do the work for thread=0. */
TransformPointer * m_ThreaderTransform;
InterpolatorPointer m_Interpolator;
bool m_ComputeGradient;
GradientImagePointer m_GradientImage;
FixedImageMaskConstPointer m_FixedImageMask;
MovingImageMaskConstPointer m_MovingImageMask;
unsigned int m_NumberOfThreads;
bool m_UseAllPixels;
bool m_UseSequentialSampling;
bool m_ReseedIterator;
int m_RandomSeed;
/** Types and variables related to BSpline deformable transforms.
* If the transform is of type third order BSplineDeformableTransform,
* then we can speed up the metric derivative calculation by
* only inspecting the parameters within the support region
* of a mapped point. */
/** Boolean to indicate if the transform is BSpline deformable. */
bool m_TransformIsBSpline;
/** The number of BSpline transform weights is the number of
* of parameter in the support region (per dimension ). */
unsigned long m_NumBSplineWeights;
itkStaticConstMacro(DeformationSplineOrder, unsigned int, 3 );
typedef BSplineDeformableTransform< CoordinateRepresentationType,
::itk::GetImageDimension<FixedImageType>::ImageDimension,
itkGetStaticConstMacro(DeformationSplineOrder) > BSplineTransformType;
typedef typename BSplineTransformType::WeightsType BSplineTransformWeightsType;
typedef typename BSplineTransformWeightsType::ValueType WeightsValueType;
typedef Array2D<WeightsValueType> BSplineTransformWeightsArrayType;
typedef typename BSplineTransformType::ParameterIndexArrayType
BSplineTransformIndexArrayType;
typedef typename BSplineTransformIndexArrayType::ValueType IndexValueType;
typedef Array2D<IndexValueType> BSplineTransformIndicesArrayType;
typedef std::vector<MovingImagePointType> MovingImagePointArrayType;
typedef std::vector<bool> BooleanArrayType;
typedef FixedArray< unsigned long,
::itk::GetImageDimension<FixedImageType>
::ImageDimension > BSplineParametersOffsetType;
/**
* If a BSplineInterpolationFunction is used, this class obtain
* image derivatives from the BSpline interpolator. Otherwise,
* image derivatives are computed using central differencing.
*/
typedef BSplineInterpolateImageFunction<MovingImageType,
CoordinateRepresentationType>
BSplineInterpolatorType;
/** Typedefs for using central difference calculator. */
typedef CentralDifferenceImageFunction<MovingImageType,
CoordinateRepresentationType>
DerivativeFunctionType;
typedef CovariantVector< double,
itkGetStaticConstMacro(MovingImageDimension) >
ImageDerivativesType;
typename BSplineTransformType::Pointer m_BSplineTransform;
BSplineTransformWeightsArrayType m_BSplineTransformWeightsArray;
BSplineTransformIndicesArrayType m_BSplineTransformIndicesArray;
MovingImagePointArrayType m_BSplinePreTransformPointsArray;
BooleanArrayType m_WithinBSplineSupportRegionArray;
BSplineParametersOffsetType m_BSplineParametersOffset;
// Variables needed for optionally caching values when using a BSpline transform.
bool m_UseCachingOfBSplineWeights;
mutable BSplineTransformWeightsType m_BSplineTransformWeights;
mutable BSplineTransformIndexArrayType m_BSplineTransformIndices;
mutable BSplineTransformWeightsType * m_ThreaderBSplineTransformWeights;
mutable BSplineTransformIndexArrayType * m_ThreaderBSplineTransformIndices;
virtual void PreComputeTransformValues( void );
/** Transform a point from FixedImage domain to MovingImage domain.
* This function also checks if mapped point is within support region. */
virtual void TransformPoint( unsigned int sampleNumber,
MovingImagePointType& mappedPoint,
bool& sampleWithinSupportRegion,
double& movingImageValue,
unsigned int threadID ) const;
virtual void TransformPointWithDerivatives( unsigned int sampleNumber,
MovingImagePointType& mappedPoint,
bool& sampleWithinSupportRegion,
double& movingImageValue,
ImageDerivativesType & gradient,
unsigned int threadID ) const;
/** Boolean to indicate if the interpolator BSpline. */
bool m_InterpolatorIsBSpline;
/** Pointer to BSplineInterpolator. */
typename BSplineInterpolatorType::Pointer m_BSplineInterpolator;
/** Pointer to central difference calculator. */
typename DerivativeFunctionType::Pointer m_DerivativeCalculator;
/** Compute image derivatives at a point. */
virtual void ComputeImageDerivatives( const MovingImagePointType & mappedPoint,
ImageDerivativesType & gradient,
unsigned int threadID ) const;
/**
* Types and variables related to multi-threading
*/
struct MultiThreaderParameterType
{
ImageToImageMetric * metric;
};
MultiThreaderType::Pointer m_Threader;
MultiThreaderParameterType m_ThreaderParameter;
mutable unsigned int * m_ThreaderNumberOfMovingImageSamples;
bool m_WithinThreadPreProcess;
bool m_WithinThreadPostProcess;
void GetValueMultiThreadedPreProcessInitiate( void ) const;
void GetValueMultiThreadedInitiate( void ) const;
void GetValueMultiThreadedPostProcessInitiate( void ) const;
static ITK_THREAD_RETURN_TYPE GetValueMultiThreadedPreProcess( void * arg );
static ITK_THREAD_RETURN_TYPE GetValueMultiThreaded( void * arg );
static ITK_THREAD_RETURN_TYPE GetValueMultiThreadedPostProcess( void * arg );
virtual inline void GetValueThread( unsigned int threadID ) const;
virtual inline void GetValueThreadPreProcess(
unsigned int itkNotUsed(threadID),
bool itkNotUsed(withinSampleThread) ) const
{ };
virtual inline bool GetValueThreadProcessSample(
unsigned int itkNotUsed(threadID),
unsigned long itkNotUsed(fixedImageSample),
const MovingImagePointType & itkNotUsed(mappedPoint),
double itkNotUsed(movingImageValue)) const
{ return false; };
virtual inline void GetValueThreadPostProcess(
unsigned int itkNotUsed(threadID),
bool itkNotUsed(withinSampleThread) ) const
{ };
void GetValueAndDerivativeMultiThreadedPreProcessInitiate( void ) const;
void GetValueAndDerivativeMultiThreadedInitiate( void ) const;
void GetValueAndDerivativeMultiThreadedPostProcessInitiate( void ) const;
static ITK_THREAD_RETURN_TYPE GetValueAndDerivativeMultiThreadedPreProcess( void * arg );
static ITK_THREAD_RETURN_TYPE GetValueAndDerivativeMultiThreaded(void * arg);
static ITK_THREAD_RETURN_TYPE GetValueAndDerivativeMultiThreadedPostProcess(void * arg);
virtual inline void GetValueAndDerivativeThread(unsigned int threadID) const;
virtual inline void GetValueAndDerivativeThreadPreProcess(
unsigned int itkNotUsed(threadID),
bool itkNotUsed(withinSampleThread)) const
{ };
virtual inline bool GetValueAndDerivativeThreadProcessSample(
unsigned int itkNotUsed(threadID),
unsigned long itkNotUsed(fixedImageSample),
const MovingImagePointType & itkNotUsed(mappedPoint),
double itkNotUsed(movingImageValue),
const ImageDerivativesType & itkNotUsed(movingImageGradientValue) ) const
{ return false; }
virtual inline void GetValueAndDerivativeThreadPostProcess(
unsigned int itkNotUsed(threadID),
bool itkNotUsed(withinSampleThread) ) const
{ };
/** Synchronizes the threader transforms with the transform
* member variable.
*/
virtual void SynchronizeTransforms() const;
private:
ImageToImageMetric(const Self&); //purposely not implemented
void operator=(const Self&); //purposely not implemented
FixedImageRegionType m_FixedImageRegion;
};
} // end namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
#include "itkOptImageToImageMetric.txx"
#endif
#endif
|