/usr/include/InsightToolkit/Review/itkOptMeanSquaresImageToImageMetric.txx is in libinsighttoolkit3-dev 3.20.1+git20120521-6build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 | /*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: itkOptMeanSquaresImageToImageMetric.txx
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkOptMeanSquaresImageToImageMetric_txx
#define __itkOptMeanSquaresImageToImageMetric_txx
#include "itkOptMeanSquaresImageToImageMetric.h"
#include "itkCovariantVector.h"
#include "itkImageRandomConstIteratorWithIndex.h"
#include "itkImageRegionConstIterator.h"
#include "itkImageRegionIterator.h"
#include "itkImageIterator.h"
#include "vnl/vnl_math.h"
namespace itk
{
/**
* Constructor
*/
template < class TFixedImage, class TMovingImage >
MeanSquaresImageToImageMetric<TFixedImage,TMovingImage>
::MeanSquaresImageToImageMetric()
{
this->SetComputeGradient(true);
m_ThreaderMSE = NULL;
m_ThreaderMSEDerivatives = NULL;
this->m_WithinThreadPreProcess = false;
this->m_WithinThreadPostProcess = false;
// For backward compatibility, the default behavior is to use all the pixels
// in the fixed image.
// This should be fixed in ITKv4 so that this metric behaves as the others.
this->SetUseAllPixels( true );
}
template < class TFixedImage, class TMovingImage >
MeanSquaresImageToImageMetric<TFixedImage,TMovingImage>
::~MeanSquaresImageToImageMetric()
{
if(m_ThreaderMSE != NULL)
{
delete [] m_ThreaderMSE;
}
m_ThreaderMSE = NULL;
if(m_ThreaderMSEDerivatives != NULL)
{
delete [] m_ThreaderMSEDerivatives;
}
m_ThreaderMSEDerivatives = NULL;
}
/**
* Print out internal information about this class
*/
template < class TFixedImage, class TMovingImage >
void
MeanSquaresImageToImageMetric<TFixedImage,TMovingImage>
::PrintSelf(std::ostream& os, Indent indent) const
{
Superclass::PrintSelf(os, indent);
}
/**
* Initialize
*/
template <class TFixedImage, class TMovingImage>
void
MeanSquaresImageToImageMetric<TFixedImage,TMovingImage>
::Initialize(void) throw ( ExceptionObject )
{
this->Superclass::Initialize();
this->Superclass::MultiThreadingInitialize();
if(m_ThreaderMSE != NULL)
{
delete [] m_ThreaderMSE;
}
m_ThreaderMSE = new double[this->m_NumberOfThreads];
if(m_ThreaderMSEDerivatives != NULL)
{
delete [] m_ThreaderMSEDerivatives;
}
m_ThreaderMSEDerivatives = new DerivativeType[this->m_NumberOfThreads];
for(unsigned int threadID=0; threadID<this->m_NumberOfThreads; threadID++)
{
m_ThreaderMSEDerivatives[threadID].SetSize( this->m_NumberOfParameters );
}
}
template < class TFixedImage, class TMovingImage >
inline bool
MeanSquaresImageToImageMetric<TFixedImage,TMovingImage>
::GetValueThreadProcessSample( unsigned int threadID,
unsigned long fixedImageSample,
const MovingImagePointType & itkNotUsed(mappedPoint),
double movingImageValue) const
{
double diff = movingImageValue - this->m_FixedImageSamples[fixedImageSample].value;
m_ThreaderMSE[threadID] += diff*diff;
return true;
}
template < class TFixedImage, class TMovingImage >
typename MeanSquaresImageToImageMetric<TFixedImage,TMovingImage>
::MeasureType
MeanSquaresImageToImageMetric<TFixedImage,TMovingImage>
::GetValue( const ParametersType & parameters ) const
{
itkDebugMacro("GetValue( " << parameters << " ) ");
if( !this->m_FixedImage )
{
itkExceptionMacro( << "Fixed image has not been assigned" );
}
memset( m_ThreaderMSE,
0,
this->m_NumberOfThreads * sizeof(MeasureType) );
// Set up the parameters in the transform
this->m_Transform->SetParameters( parameters );
this->m_Parameters = parameters;
// MUST BE CALLED TO INITIATE PROCESSING
this->GetValueMultiThreadedInitiate();
itkDebugMacro( "Ratio of voxels mapping into moving image buffer: "
<< this->m_NumberOfPixelsCounted << " / "
<< this->m_NumberOfFixedImageSamples
<< std::endl );
if( this->m_NumberOfPixelsCounted <
this->m_NumberOfFixedImageSamples / 4 )
{
itkExceptionMacro( "Too many samples map outside moving image buffer: "
<< this->m_NumberOfPixelsCounted << " / "
<< this->m_NumberOfFixedImageSamples
<< std::endl );
}
double mse = m_ThreaderMSE[0];
for(unsigned int t=1; t<this->m_NumberOfThreads; t++)
{
mse += m_ThreaderMSE[t];
}
mse /= this->m_NumberOfPixelsCounted;
return mse;
}
template < class TFixedImage, class TMovingImage >
inline bool
MeanSquaresImageToImageMetric<TFixedImage,TMovingImage>
::GetValueAndDerivativeThreadProcessSample( unsigned int threadID,
unsigned long fixedImageSample,
const MovingImagePointType & itkNotUsed(mappedPoint),
double movingImageValue,
const ImageDerivativesType &
movingImageGradientValue ) const
{
double diff = movingImageValue - this->m_FixedImageSamples[fixedImageSample].value;
m_ThreaderMSE[threadID] += diff*diff;
FixedImagePointType fixedImagePoint = this->m_FixedImageSamples[fixedImageSample].point;
// Need to use one of the threader transforms if we're
// not in thread 0.
//
// Use a raw pointer here to avoid the overhead of smart pointers.
// For instance, Register and UnRegister have mutex locks around
// the reference counts.
TransformType* transform;
if (threadID > 0)
{
transform = this->m_ThreaderTransform[threadID - 1];
}
else
{
transform = this->m_Transform;
}
// Jacobian should be evaluated at the unmapped (fixed image) point.
const TransformJacobianType & jacobian = transform
->GetJacobian( fixedImagePoint );
for(unsigned int par=0; par<this->m_NumberOfParameters; par++)
{
double sum = 0.0;
for(unsigned int dim=0; dim<MovingImageDimension; dim++)
{
sum += 2.0 * diff * jacobian( dim, par ) * movingImageGradientValue[dim];
}
m_ThreaderMSEDerivatives[threadID][par] += sum;
}
return true;
}
/**
* Get the both Value and Derivative Measure
*/
template < class TFixedImage, class TMovingImage >
void
MeanSquaresImageToImageMetric<TFixedImage,TMovingImage>
::GetValueAndDerivative( const ParametersType & parameters,
MeasureType & value,
DerivativeType & derivative) const
{
if( !this->m_FixedImage )
{
itkExceptionMacro( << "Fixed image has not been assigned" );
}
// Set up the parameters in the transform
this->m_Transform->SetParameters( parameters );
this->m_Parameters = parameters;
// Reset the joint pdfs to zero
memset( m_ThreaderMSE,
0,
this->m_NumberOfThreads * sizeof(MeasureType) );
// Set output values to zero
if(derivative.GetSize() != this->m_NumberOfParameters)
{
derivative = DerivativeType( this->m_NumberOfParameters );
}
memset( derivative.data_block(),
0,
this->m_NumberOfParameters * sizeof(double) );
for( unsigned int threadID = 0; threadID<this->m_NumberOfThreads; threadID++ )
{
memset( m_ThreaderMSEDerivatives[threadID].data_block(),
0,
this->m_NumberOfParameters * sizeof(double) );
}
// MUST BE CALLED TO INITIATE PROCESSING
this->GetValueAndDerivativeMultiThreadedInitiate();
itkDebugMacro( "Ratio of voxels mapping into moving image buffer: "
<< this->m_NumberOfPixelsCounted << " / "
<< this->m_NumberOfFixedImageSamples
<< std::endl );
if( this->m_NumberOfPixelsCounted <
this->m_NumberOfFixedImageSamples / 4 )
{
itkExceptionMacro( "Too many samples map outside moving image buffer: "
<< this->m_NumberOfPixelsCounted << " / "
<< this->m_NumberOfFixedImageSamples
<< std::endl );
}
value = 0;
for(unsigned int t=0; t<this->m_NumberOfThreads; t++)
{
value += m_ThreaderMSE[t];
for(unsigned int parameter = 0; parameter < this->m_NumberOfParameters;
parameter++)
{
derivative[parameter] += m_ThreaderMSEDerivatives[t][parameter];
}
}
value /= this->m_NumberOfPixelsCounted;
for(unsigned int parameter = 0; parameter < this->m_NumberOfParameters;
parameter++)
{
derivative[parameter] /= this->m_NumberOfPixelsCounted;
}
}
/**
* Get the match measure derivative
*/
template < class TFixedImage, class TMovingImage >
void
MeanSquaresImageToImageMetric<TFixedImage,TMovingImage>
::GetDerivative( const ParametersType & parameters,
DerivativeType & derivative ) const
{
if( !this->m_FixedImage )
{
itkExceptionMacro( << "Fixed image has not been assigned" );
}
MeasureType value;
// call the combined version
this->GetValueAndDerivative( parameters, value, derivative );
}
} // end namespace itk
#endif
|