/usr/include/InsightToolkit/Review/itkQuadEdgeMeshDecimationQuadricElementHelper.h is in libinsighttoolkit3-dev 3.20.1+git20120521-6build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 | /*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: itkQuadEdgeMeshDecimationQuadricElementHelper.h
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkQuadEdgeMeshDecimationQuadricElementHelper_h
#define __itkQuadEdgeMeshDecimationQuadricElementHelper_h
#include <itkPoint.h>
#include <vnl/vnl_vector_fixed.h>
#include <vnl/vnl_matrix.h>
#include <vnl/algo/vnl_matrix_inverse.h>
#include "itkTriangleHelper.h"
#include "itkNumericTraits.h"
namespace itk
{
///TODO explicit specification for VDimension=3!!!
template< class TPoint >
class QuadEdgeMeshDecimationQuadricElementHelper
{
public:
typedef QuadEdgeMeshDecimationQuadricElementHelper Self;
typedef TPoint PointType;
typedef typename PointType::CoordRepType CoordType;
itkStaticConstMacro(PointDimension, unsigned int, PointType::PointDimension);
itkStaticConstMacro(NumberOfCoefficients, unsigned int,
PointDimension * ( PointDimension + 1 ) / 2 + PointDimension + 1);
typedef typename PointType::VectorType VectorType;
typedef vnl_matrix< CoordType > VNLMatrixType;
typedef vnl_vector_fixed< CoordType,
itkGetStaticConstMacro(PointDimension) > VNLVectorType;
typedef vnl_vector_fixed< CoordType,
itkGetStaticConstMacro(NumberOfCoefficients) > CoefficientVectorType;
typedef TriangleHelper< PointType > TriangleType;
// *****************************************************************
QuadEdgeMeshDecimationQuadricElementHelper():
m_Coefficients( itk::NumericTraits< CoordType >::Zero ),
m_A( PointDimension, PointDimension, itk::NumericTraits< CoordType >::Zero ),
m_B( itk::NumericTraits< CoordType >::Zero ),
m_SVDAbsoluteThreshold( static_cast< CoordType >( 1e-6 ) ),
m_SVDRelativeThreshold( static_cast< CoordType >( 1e-3 ) )
{
this->m_Rank = PointDimension;
}
QuadEdgeMeshDecimationQuadricElementHelper( const CoefficientVectorType& iCoefficients ):
m_Coefficients( iCoefficients ),
m_A( PointDimension, PointDimension, itk::NumericTraits< CoordType >::Zero ),
m_B( itk::NumericTraits< CoordType >::Zero ),
m_SVDAbsoluteThreshold( static_cast< CoordType >( 1e-3 ) ),
m_SVDRelativeThreshold( static_cast< CoordType >( 1e-3 ) )
{
this->m_Rank = PointDimension;
this->ComputeAMatrixAndBVector();
}
~QuadEdgeMeshDecimationQuadricElementHelper()
{}
CoefficientVectorType GetCoefficients( ) const
{
return this->m_Coefficients;
}
VNLMatrixType GetAMatrix()
{
this->ComputeAMatrixAndBVector();
return m_A;
}
VNLVectorType GetBVector()
{
ComputeAMatrixAndBVector();
return m_B;
}
unsigned int GetRank() const
{
return m_Rank;
}
///TODO this method should be really optimized!!!
inline CoordType ComputeError( const PointType& iP ) const
{
// ComputeAMatrixAndBVector();
vnl_svd< CoordType > svd( m_A, m_SVDAbsoluteThreshold );
svd.zero_out_relative( m_SVDRelativeThreshold );
CoordType oError = inner_product( iP.GetVnlVector(), svd.recompose() * iP.GetVnlVector() );
return this->m_Coefficients[ this->m_Coefficients.size() - 1] - oError;
/*
CoordType oError( 0. );
std::vector< CoordType > pt( PointDimension + 1, 1. );
unsigned int dim1( 0 ), dim2, k( 0 );
while( dim1 < PointDimension )
{
pt[dim1] = iP[dim1];
++dim1;
}
for( dim1 = 0; dim1 < PointDimension + 1; ++dim1 )
{
oError += this->m_Coefficients[k++] * pt[dim1] * pt[dim1];
for( dim2 = dim1 + 1; dim2 < PointDimension + 1; ++dim2 )
{
oError += 2. * this->m_Coefficients[k++] * pt[dim1] * pt[dim2];
}
}
oError += this->m_Coefficients[k++];
return oError;*/
}
///TODO this method should be really optimized!!!
inline CoordType ComputeErrorAtOptimalLocation( const PointType& iP )
{
PointType optimal_location = ComputeOptimalLocation( iP );
return ComputeError( optimal_location );
}
PointType ComputeOptimalLocation( const PointType& iP )
{
ComputeAMatrixAndBVector();
vnl_svd< CoordType > svd( m_A, m_SVDAbsoluteThreshold );
svd.zero_out_relative( m_SVDRelativeThreshold );
m_Rank = svd.rank();
VNLVectorType y = m_B.as_vector() - m_A * iP.GetVnlVector();
VNLVectorType displacement = svd.solve( y );
PointType oP;
for( unsigned int dim = 0; dim < PointDimension; dim++ )
{
oP[dim] = iP[dim] + displacement[dim];
}
return oP;
}
///TODO to be implemented!!!
PointType ComputeOptimalLocation(
const unsigned int& iNumberOfEigenValues )
{
}
// PointType ComputeOptimalLocation(
// const CoordType& iValue )
// {
// ComputeAMatrixAndBVector();
// vnl_svd< CoordType > svd( m_A );
// svd.zero.zero_out_relative( iValue );
// m_Rank = svd.rank();
//
// VNLVectorType location = svd.solve( m_B );
// PointType oP;
//
// for( unsigned int dim = 0; dim < PointDimension; dim++ )
// oP[dim] = location[dim];
//
// return oP;
// }
void AddTriangle( const PointType& iP1,
const PointType& iP2,
const PointType& iP3,
const CoordType& iWeight = static_cast< CoordType >( 1. ) )
{
VectorType N = TriangleType::ComputeNormal( iP1, iP2, iP3 );
AddPoint( iP1, N, iWeight );
}
void AddPoint( const PointType& iP,
const VectorType& iN,
const CoordType& iWeight = static_cast< CoordType >( 1. ) )
{
unsigned int k( 0 ), dim1, dim2;
CoordType d = -iN * iP.GetVectorFromOrigin();
for( dim1 = 0; dim1 < PointDimension; ++dim1 )
{
for( dim2 = dim1; dim2 < PointDimension; ++dim2 )
{
this->m_Coefficients[k++] += iWeight * iN[dim1] * iN[dim2];
}
this->m_Coefficients[k++] += iWeight * iN[dim1] * d;
}
this->m_Coefficients[k++] += iWeight * d * d;
}
// ***********************************************************************
// operators
Self& operator=( const Self& iRight )
{
this->m_Coefficients = iRight.m_Coefficients;
return *this;
}
Self operator+( const Self & iRight ) const
{
return Self( this->m_Coefficients + iRight.m_Coefficients );
}
Self& operator+=( const Self& iRight )
{
this->m_Coefficients += iRight.m_Coefficients;
return *this;
}
Self operator-( const Self& iRight ) const
{
return Self( this->m_Coefficients - iRight.m_Coefficients );
}
Self& operator-=( const Self& iRight )
{
this->m_Coefficients -= iRight.m_Coefficients;
return *this;
}
Self operator*( const CoordType& iV ) const
{
Self oElement = Self( this->m_Coefficients * iV );
return oElement;
}
Self& operator*=( const CoordType& iV )
{
this->m_Coefficients *= iV;
return *this;
}
protected:
CoefficientVectorType m_Coefficients;
VNLMatrixType m_A;
VNLVectorType m_B;
unsigned int m_Rank;
CoordType m_SVDAbsoluteThreshold;
CoordType m_SVDRelativeThreshold;
//bool m_MatrixFilled;
void ComputeAMatrixAndBVector()
{
unsigned int k( 0 ), dim1, dim2;
for( dim1 = 0; dim1 < PointDimension; ++dim1 )
{
for( dim2 = dim1; dim2 < PointDimension; ++dim2 )
{
m_A[dim1][dim2] = m_A[dim2][dim1] = m_Coefficients[k++];
}
m_B[dim1] = - m_Coefficients[k++];
}
//m_MatrixFilled = true;
}
};
}
#endif
|