/usr/include/InsightToolkit/Review/itkRegionBasedLevelSetFunction.h is in libinsighttoolkit3-dev 3.20.1+git20120521-6build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 | /*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: itkRegionBasedLevelSetFunction.h
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkRegionBasedLevelSetFunction_h
#define __itkRegionBasedLevelSetFunction_h
#include "itkFiniteDifferenceFunction.h"
#include "itkRegularizedHeavisideStepFunction.h"
#include "vnl/vnl_matrix_fixed.h"
namespace itk {
/** \class RegionBasedLevelSetFunction
*
* \brief LevelSet function that computes a speed image based on regional integrals
*
* This class implements a level set function that computes the speed image by
* integrating values on the image domain.
*
* Based on the paper:
*
* "An active contour model without edges"
* T. Chan and L. Vese.
* In Scale-Space Theories in Computer Vision, pages 141–151, 1999.
*
* \author Mosaliganti K., Smith B., Gelas A., Gouaillard A., Megason S.
*
* This code was taken from the Insight Journal paper:
*
* "Cell Tracking using Coupled Active Surfaces for Nuclei and Membranes"
* http://www.insight-journal.org/browse/publication/642
* http://hdl.handle.net/10380/3055
*
* That is based on the papers:
*
* "Level Set Segmentation: Active Contours without edge"
* http://www.insight-journal.org/browse/publication/322
* http://hdl.handle.net/1926/1532
*
* and
*
* "Level set segmentation using coupled active surfaces"
* http://www.insight-journal.org/browse/publication/323
* http://hdl.handle.net/1926/1533
*
* NOTE: The convention followed is
* inside of the level-set function is negative and outside is positive.
*/
template < class TInput, // LevelSetImageType
class TFeature, // FeatureImageType
class TSharedData >
class ITK_EXPORT RegionBasedLevelSetFunction: public
FiniteDifferenceFunction< TInput >
{
public:
/** Standard class typedefs. */
typedef RegionBasedLevelSetFunction Self;
typedef FiniteDifferenceFunction< TInput > Superclass;
typedef SmartPointer<Self> Pointer;
typedef SmartPointer<const Self> ConstPointer;
itkStaticConstMacro(ImageDimension, unsigned int, Superclass::ImageDimension);
// itkNewMacro() is purposely not provided since this is an abstract class.
/** Run-time type information (and related methods) */
itkTypeMacro( RegionBasedLevelSetFunction, FiniteDifferenceFunction );
/** Extract some parameters from the superclass. */
typedef double TimeStepType;
typedef typename Superclass::ImageType ImageType;
typedef typename Superclass::PixelType PixelType;
typedef PixelType ScalarValueType;
typedef typename Superclass::RadiusType RadiusType;
typedef typename Superclass::NeighborhoodType NeighborhoodType;
typedef typename Superclass::NeighborhoodScalesType NeighborhoodScalesType;
typedef typename Superclass::FloatOffsetType FloatOffsetType;
typedef FixedArray< ScalarValueType, itkGetStaticConstMacro(ImageDimension) >
VectorType;
/* This structure is derived from LevelSetFunction and stores intermediate
values for computing time step sizes */
struct GlobalDataStruct
{
GlobalDataStruct()
{
ScalarValueType null_value = NumericTraits<ScalarValueType>::Zero;
m_MaxCurvatureChange = null_value;
m_MaxAdvectionChange = null_value;
m_MaxGlobalChange = null_value;
}
~GlobalDataStruct() {}
vnl_matrix_fixed<ScalarValueType,
itkGetStaticConstMacro(ImageDimension),
itkGetStaticConstMacro(ImageDimension)> m_dxy;
ScalarValueType m_dx[itkGetStaticConstMacro(ImageDimension)];
ScalarValueType m_dx_forward[ itkGetStaticConstMacro( ImageDimension ) ];
ScalarValueType m_dx_backward[ itkGetStaticConstMacro( ImageDimension ) ];
ScalarValueType m_GradMagSqr;
ScalarValueType m_GradMag;
ScalarValueType m_MaxCurvatureChange;
ScalarValueType m_MaxAdvectionChange;
ScalarValueType m_MaxGlobalChange;
};
typedef TInput InputImageType;
typedef typename InputImageType::ConstPointer InputImageConstPointer;
typedef typename InputImageType::Pointer InputImagePointer;
typedef typename InputImageType::PixelType InputPixelType;
typedef typename InputImageType::IndexType InputIndexType;
typedef typename InputImageType::IndexValueType InputIndexValueType;
typedef typename InputImageType::SizeType InputSizeType;
typedef typename InputImageType::SizeValueType InputSizeValueType;
typedef typename InputImageType::RegionType InputRegionType;
typedef typename InputImageType::PointType InputPointType;
typedef TFeature FeatureImageType;
typedef typename FeatureImageType::ConstPointer FeatureImageConstPointer;
typedef typename FeatureImageType::PixelType FeaturePixelType;
typedef typename FeatureImageType::IndexType FeatureIndexType;
typedef typename FeatureImageType::SpacingType FeatureSpacingType;
typedef typename FeatureImageType::OffsetType FeatureOffsetType;
typedef TSharedData SharedDataType;
typedef typename SharedDataType::Pointer SharedDataPointer;
typedef HeavisideStepFunctionBase< InputPixelType, InputPixelType > HeavisideFunctionType;
typedef typename HeavisideFunctionType::ConstPointer HeavisideFunctionConstPointer;
void SetDomainFunction( const HeavisideFunctionType * f )
{
this->m_DomainFunction = f;
}
virtual void Initialize(const RadiusType &r)
{
this->SetRadius(r);
// Dummy neighborhood.
NeighborhoodType it;
it.SetRadius( r );
// Find the center index of the neighborhood.
m_Center = it.Size() / 2;
// Get the stride length for each axis.
for(unsigned int i = 0; i < ImageDimension; i++)
{
m_xStride[i] = it.GetStride(i);
}
}
void SetSharedData( SharedDataPointer sharedDataIn )
{
this->m_SharedData = sharedDataIn;
}
void UpdateSharedData( bool forceUpdate );
void *GetGlobalDataPointer() const
{
return new GlobalDataStruct;
}
TimeStepType ComputeGlobalTimeStep(void *GlobalData) const;
/** Compute the equation value. */
virtual PixelType ComputeUpdate(const NeighborhoodType &neighborhood,
void *globalData, const FloatOffsetType& = FloatOffsetType(0.0));
void SetInitialImage(InputImageType *f)
{
m_InitialImage = f;
}
virtual const FeatureImageType *GetFeatureImage() const
{ return m_FeatureImage.GetPointer(); }
virtual void SetFeatureImage(const FeatureImageType *f)
{
m_FeatureImage = f;
FeatureSpacingType spacing = m_FeatureImage->GetSpacing();
for(unsigned int i = 0; i < ImageDimension; i++)
{
this->m_InvSpacing[i] = 1/spacing[i];
}
}
/** Advection field. Default implementation returns a vector of zeros. */
virtual VectorType AdvectionField(const NeighborhoodType &,
const FloatOffsetType &, GlobalDataStruct * = 0) const
{ return this->m_ZeroVectorConstant; }
/** Nu. Area regularization values */
void SetAreaWeight( const ScalarValueType& nu)
{ this->m_AreaWeight = nu; }
ScalarValueType GetAreaWeight() const
{ return this->m_AreaWeight; }
/** Lambda1. Internal intensity difference weight */
void SetLambda1( const ScalarValueType& lambda1 )
{ this->m_Lambda1 = lambda1; }
ScalarValueType GetLambda1() const
{ return this->m_Lambda1; }
/** Lambda2. External intensity difference weight */
void SetLambda2( const ScalarValueType& lambda2 )
{ this->m_Lambda2 = lambda2; }
ScalarValueType GetLambda2() const
{ return this->m_Lambda2; }
/** Gamma. Overlap penalty */
void SetOverlapPenaltyWeight( const ScalarValueType& gamma )
{ this->m_OverlapPenaltyWeight = gamma; }
ScalarValueType GetOverlapPenaltyWeight() const
{ return this->m_OverlapPenaltyWeight; }
/** Gamma. Scales all curvature weight values */
virtual void SetCurvatureWeight(const ScalarValueType c)
{ m_CurvatureWeight = c; }
ScalarValueType GetCurvatureWeight() const
{ return m_CurvatureWeight; }
void SetAdvectionWeight( const ScalarValueType& iA)
{ this->m_AdvectionWeight = iA; }
ScalarValueType GetAdvectionWeight() const
{ return this->m_AdvectionWeight; }
/** Weight of the laplacian smoothing term */
void SetReinitializationSmoothingWeight(const ScalarValueType c)
{ m_ReinitializationSmoothingWeight = c; }
ScalarValueType GetReinitializationSmoothingWeight() const
{ return m_ReinitializationSmoothingWeight; }
/** Volume matching weight. */
void SetVolumeMatchingWeight( const ScalarValueType& tau )
{ this->m_VolumeMatchingWeight = tau; }
ScalarValueType GetVolumeMatchingWeight() const
{ return this->m_VolumeMatchingWeight; }
/** Pixel Volume = Number of pixels inside the level-set */
void SetVolume( const ScalarValueType& volume )
{ this->m_Volume = volume; }
ScalarValueType GetVolume() const
{ return this->m_Volume; }
/** Set function id. */
void SetFunctionId( const unsigned int& iFid )
{ this->m_FunctionId = iFid; }
virtual void ReleaseGlobalDataPointer(void *GlobalData) const
{ delete (GlobalDataStruct *) GlobalData; }
virtual ScalarValueType ComputeCurvature(const NeighborhoodType &,
const FloatOffsetType &, GlobalDataStruct *gd );
/** \brief Laplacian smoothing speed can be used to spatially modify the
effects of laplacian smoothing of the level set function */
virtual ScalarValueType LaplacianSmoothingSpeed(
const NeighborhoodType &,
const FloatOffsetType &, GlobalDataStruct * = 0) const
{ return NumericTraits<ScalarValueType>::One; }
/** \brief Curvature speed can be used to spatially modify the effects of
curvature . The default implementation returns one. */
virtual ScalarValueType CurvatureSpeed(const NeighborhoodType &,
const FloatOffsetType &, GlobalDataStruct * = 0
) const
{ return NumericTraits<ScalarValueType>::One; }
/** This method must be defined in a subclass to implement a working function
* object. This method is called before the solver begins its work to
* produce the speed image used as the level set function's Advection field
* term. See LevelSetFunction for more information. */
virtual void CalculateAdvectionImage() {}
protected:
RegionBasedLevelSetFunction();
virtual ~RegionBasedLevelSetFunction() {}
/** The initial level set image */
InputImageConstPointer m_InitialImage;
/** The feature image */
FeatureImageConstPointer m_FeatureImage;
SharedDataPointer m_SharedData;
HeavisideFunctionConstPointer m_DomainFunction;
/** Area regularization weight */
ScalarValueType m_AreaWeight;
/** Internal functional of the level set weight */
ScalarValueType m_Lambda1;
/** External functional of the level set weight */
ScalarValueType m_Lambda2;
/** Overlap Penalty Weight */
ScalarValueType m_OverlapPenaltyWeight;
/** Volume Regularization Weight */
ScalarValueType m_VolumeMatchingWeight;
/** Volume Constraint in pixels */
ScalarValueType m_Volume;
/** Curvature Regularization Weight */
ScalarValueType m_CurvatureWeight;
ScalarValueType m_AdvectionWeight;
/** Laplacian Regularization Weight */
ScalarValueType m_ReinitializationSmoothingWeight;
unsigned int m_FunctionId;
std::slice x_slice[itkGetStaticConstMacro(ImageDimension)];
::size_t m_Center;
::size_t m_xStride[itkGetStaticConstMacro(ImageDimension)];
double m_InvSpacing[itkGetStaticConstMacro(ImageDimension)];
static double m_WaveDT;
static double m_DT;
void ComputeHImage();
/** \brief Compute the global term as a combination of the internal, external,
overlapping and volume regularization terms. */
ScalarValueType ComputeGlobalTerm(
const ScalarValueType& imagePixel,
const InputIndexType& inputIndex );
/** \brief Compute the internal term
\param[in] iValue Feature Image Value
\param[in] iIdx Feature Image Index
\param[in] fId Index of the LevelSet Function */
virtual ScalarValueType ComputeInternalTerm(const FeaturePixelType& iValue,
const FeatureIndexType& iIdx ) = 0;
/** \brief Compute the external term
\param[in] iValue Feature Image Value
\param[in] iIdx Feature Image Index
\param[in] pr Product of Heaviside Functions
\note after discussion with kishore, pr is not and unsigned int */
virtual ScalarValueType ComputeExternalTerm(const FeaturePixelType& iValue,
const FeatureIndexType& iIdx ) = 0;
/** \brief Compute the overlap term
\param[in] featIndex
\param[out] pr = \f$ \prod_{i \neq j} H(\phi_i)\f$
\return OverlapTerm = \f$ \sum_{i \neq j} H(\phi_i)\f$ */
virtual ScalarValueType ComputeOverlapParameters( const FeatureIndexType& featIndex,
ScalarValueType& pr ) = 0;
/** \brief Compute the overlap term
\return \f$ \int_{p \in \Omega} H(\phi_i) dp - this->Volume \f$
\note the volume regularization does not depend on the spacing.
So the volume must be set in number of pixels (not in real world unit). */
ScalarValueType ComputeVolumeRegularizationTerm( );
/** \brief Compute the laplacian term
\return \f$ \Delta \phi - \div(\frac{\nabla \phi}{|\nabla \phi|}) \f$
\verbatim For details see
@inproceedings{bb30335,
AUTHOR = "Li, C.M. and Xu, C.Y. and Gui, C. and Fox, M.D.",
TITLE = "Level Set Evolution without Re-Initialization: A New Variational Formulation",
BOOKTITLE = CVPR05,
YEAR = "2005",
PAGES = "I: 430-436"}
\endverbatim */
/** \brief Compute the laplacian
\return \f$ \Delta \phi \f$ */
ScalarValueType ComputeLaplacian( GlobalDataStruct *gd );
/** \brief Compute Hessian Matrix */
void ComputeHessian( const NeighborhoodType &it,
GlobalDataStruct *globalData );
/** \brief Compute Parameters for the inner and outer parts. */
virtual void ComputeParameters() = 0;
/** \brief Update and save the inner and outer parameters in the shared data
structure. */
virtual void UpdateSharedDataParameters() = 0;
bool m_UpdateC;
/** This method's only purpose is to initialize the zero vector
* constant. */
static VectorType InitializeZeroVectorConstant();
/** Zero vector constant. */
static VectorType m_ZeroVectorConstant;
private:
RegionBasedLevelSetFunction(const Self&); //purposely not implemented
void operator=(const Self&); //purposely not implemented
};
} // end namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
#include "itkRegionBasedLevelSetFunction.txx"
#endif
#endif
|