This file is indexed.

/usr/include/ITK-4.9/itkBSplineTransformInitializer.hxx is in libinsighttoolkit4-dev 4.9.0-4ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkBSplineTransformInitializer_hxx
#define itkBSplineTransformInitializer_hxx

#include "itkBSplineTransformInitializer.h"

#include "itkContinuousIndex.h"
#include "itkPointSet.h"
#include "itkBoundingBox.h"

namespace itk
{

template<typename TTransform, typename TImage>
BSplineTransformInitializer<TTransform, TImage>
::BSplineTransformInitializer() :
  m_Transform( ITK_NULLPTR ),
  m_SetTransformDomainMeshSizeViaInitializer( false )
{
  this->m_TransformDomainMeshSize.Fill( 1 );
}

template<typename TTransform, typename TImage>
BSplineTransformInitializer<TTransform, TImage>
::~BSplineTransformInitializer()
{
}

template<typename TTransform, typename TImage>
void
BSplineTransformInitializer<TTransform, TImage>
::SetTransformDomainMeshSize( const MeshSizeType meshSize )
{
  itkDebugMacro( "setting m_TransformDomainMeshSize to " << meshSize );
  if( this->m_SetTransformDomainMeshSizeViaInitializer == false ||
    this->m_TransformDomainMeshSize != meshSize )
    {
    this->m_SetTransformDomainMeshSizeViaInitializer = true;
    this->m_TransformDomainMeshSize = meshSize;
    this->Modified();
    }
}

template<typename TTransform, typename TImage>
void
BSplineTransformInitializer<TTransform, TImage>
::InitializeTransform() const
{
  if( !this->m_Transform )
    {
    itkExceptionMacro( << "Transform has not been set." );
    return;
    }
  if( !this->m_Image )
    {
    itkExceptionMacro( << "Image has not been set." );
    return;
    }
  if( TImage::GetImageDimension() != SpaceDimension )
    {
    itkExceptionMacro( << "Image dimensionality does not match the transform." );
    return;
    }

  OriginType                        transformDomainOrigin;
  PhysicalDimensionsType            transformDomainPhysicalDimensions;
  DirectionType                     transformDomainDirection;

  // Determine the image corners.  We keep track of the relative location of
  // the corners using a binary labeling system.  For example, in a 3-D
  // coordinate system aligned with the x,y,z axes, we have 8 points labeled as
  // follows:
  //
  //  1. 000  min_x, min_y, min_z
  //  2. 001  max_x, min_y, min_z
  //  3. 010  min_x, max_y, min_z
  //  4. 011  max_x, max_y, min_z
  //  5. 100  min_x, min_y, min_z
  //  6. 101  max_x, min_y, max_z
  //  7. 110  min_x, max_y, max_z
  //  8. 111  max_x, max_y, max_z
  //
  // We use this binary description of the corners in n-dimensions because it
  // allows us to know the adjacent neighbors of an arbitrary image corner. For
  // example, suppose we locate the transform domain origin at the corner 011
  // the adjacent neighbors which form the rotated coordinate system are
  // 111, 001, and 010.  Notice that we just change 1 bit at a time from the
  // origin to determine these axes.  Thus bitwise operators are used
  // throughout the code so that the initializer is generalized to n-dimensions.

  typedef typename ImagePointType::CoordRepType      CoordRepType;

  typedef PointSet<CoordRepType, SpaceDimension>     PointSetType;
  typename PointSetType::Pointer cornerPoints = PointSetType::New();
  cornerPoints->Initialize();

  typedef typename PointSetType::PointType           PointType;
  typedef typename PointSetType::PointIdentifier     PointIdentifier;
  typedef typename PointType::RealType               RealType;
  typedef typename PointType::VectorType             VectorType;

  typedef ContinuousIndex<CoordRepType, SpaceDimension> ContinuousIndexType;

  // We first convert the image corners into points which reside in physical
  // space and label them as indicated above.  Note that the corners reside
  // at the extreme corners of the image and not just at the voxel centers.
  // We also store the corners using the point set class which gives us easy
  // access to the bounding box.

  const CoordRepType BSplineTransformDomainEpsilon = std::pow( 2.0, -3 );

  ContinuousIndexType startIndex;
  for( unsigned int i = 0; i < SpaceDimension; i++ )
    {
    startIndex[i] = this->m_Image->GetRequestedRegion().GetIndex()[i] - 0.5 -
      BSplineTransformDomainEpsilon;
    }

  for( unsigned int d = 0, N = 1 << SpaceDimension; d < N; d++ )
    {
    ContinuousIndexType whichIndex;
    for( unsigned int i = 0; i < SpaceDimension; i++ )
      {
      whichIndex[i] = startIndex[i] + static_cast<CoordRepType>( ( ( d >> i ) &
        1 ) * ( this->m_Image->GetRequestedRegion().GetSize()[i] + 2.0 *
        BSplineTransformDomainEpsilon ) );
      }
    ImagePointType point;
    this->m_Image->TransformContinuousIndexToPhysicalPoint( whichIndex, point );
    PointType corner;
    corner.CastFrom( point );
    cornerPoints->SetPoint( d, corner );
    }

  // We next determine which corner is the transform domain origin by which
  // point is closest to the minimum of the bounding box.

  typedef BoundingBox<unsigned int, SpaceDimension,
    typename PointSetType::CoordRepType,
    typename PointSetType::PointsContainer> BoundingBoxType;
  typename BoundingBoxType::Pointer bbox = BoundingBoxType::New();
  bbox->SetPoints( cornerPoints->GetPoints() );
  bbox->ComputeBoundingBox();

  transformDomainOrigin.Fill( 0 );
  PointIdentifier transformDomainOriginId = 0;
  RealType minDistance = NumericTraits<RealType>::max();

  for( unsigned int d = 0; d < cornerPoints->GetNumberOfPoints(); d++ )
    {
    PointType corner;
    corner.Fill( 0.0 );
    cornerPoints->GetPoint( d, &corner );

    RealType distance = corner.SquaredEuclideanDistanceTo(
      bbox->GetMinimum() );
    if( distance < minDistance )
      {
      transformDomainOrigin.CastFrom( corner );
      minDistance = distance;
      transformDomainOriginId = static_cast<PointIdentifier>( d );
      }
    }

  // Now we need to find the transform direction matrix.  This is done
  // by using the domain origin and its adjacent neighbors to determine a new
  // rotated coordinate system.

  transformDomainDirection.SetIdentity();

  // We first determine which image axis is the most aligned with each physical
  // axis.

  PointIdentifier minCornerId[SpaceDimension];
  double minAngle[SpaceDimension];

  for( unsigned int d = 0; d < SpaceDimension; d++ )
    {
    minAngle[d] = NumericTraits<double>::max();

    VectorType vectorAxis( 0.0 );
    vectorAxis[d] = 1.0;

    for( unsigned int i = 0; i < SpaceDimension; i++ )
      {
      PointIdentifier oppositeCornerId = static_cast<PointIdentifier>(
        1 << i ) ^ transformDomainOriginId;

      PointType corner;
      corner.Fill( 0.0 );
      cornerPoints->GetPoint( oppositeCornerId, &corner );

      VectorType vector = corner - transformDomainOrigin;
      vector.Normalize();

      double theta = angle( vectorAxis.GetVnlVector(), vector.GetVnlVector() );

      if( theta < minAngle[d] )
        {
        bool alreadyFound = false;
        for( unsigned int j = 0; j < d; j++ )
          {
          if( minCornerId[j] == oppositeCornerId )
            {
            alreadyFound = true;
            break;
            }
          }
        if( !alreadyFound )
          {
          minCornerId[d] = oppositeCornerId;
          minAngle[d] = theta;
          }
        }
      }
    }

  // Now that we know which image axes corresponds to the unrotated coordinate
  // axes in physical space, we can easily construct the rotation matrix which
  // rotates a point from the unrotated coordinate system to the rotated
  // coordinate system.  This is done by placing the rotated axis vectors as
  // columns in the rotation matrix.

  for( unsigned int d = 0; d < SpaceDimension; d++ )
    {
    PointType corner;
    corner.Fill( 0.0 );
    cornerPoints->GetPoint( minCornerId[d], &corner );

    VectorType vector = corner - transformDomainOrigin;

    // Note that specifying the size and spacing separately doesn't matter in
    // the case of the B-spline transform since the B-spline transform is a
    // continuous object over its finite domain.

    transformDomainPhysicalDimensions[d] = vector.GetNorm();
    vector.Normalize();

    for( unsigned int i = 0; i < SpaceDimension; i++ )
      {
      transformDomainDirection[i][d] = vector[i];
      }
    }

  this->m_Transform->SetTransformDomainOrigin( transformDomainOrigin );
  this->m_Transform->SetTransformDomainPhysicalDimensions(
    transformDomainPhysicalDimensions );
  this->m_Transform->SetTransformDomainDirection( transformDomainDirection );
  if( this->m_SetTransformDomainMeshSizeViaInitializer == true )
    {
    this->m_Transform->SetTransformDomainMeshSize(
      this->m_TransformDomainMeshSize );
    }
}

template<typename TTransform, typename TImage>
void
BSplineTransformInitializer<TTransform, TImage>
::PrintSelf(std::ostream & os, Indent indent) const
{
  Superclass::PrintSelf( os, indent );

  os << indent << "Transform: " << std::endl;
  if( this->m_Transform )
    {
    os << indent << this->m_Transform  << std::endl;
    }
  else
    {
    os << indent << "None" << std::endl;
    }
  if( this->m_SetTransformDomainMeshSizeViaInitializer == true )
    {
    os << indent << "Transform domain mesh size:" <<
      this->m_TransformDomainMeshSize << std::endl;
    }
  os << indent << "Image: " << this->m_Image << std::endl;
}

}  // namespace itk

#endif