This file is indexed.

/usr/include/ITK-4.9/itkBoxUtilities.h is in libinsighttoolkit4-dev 4.9.0-4ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkBoxUtilities_h
#define itkBoxUtilities_h
#include "itkProgressReporter.h"
#include "itkShapedNeighborhoodIterator.h"
#include "itkImageRegionIterator.h"
#include "itkConstantBoundaryCondition.h"
#include "itkImageRegionIteratorWithIndex.h"
#include "itkImageRegionIterator.h"
#include "itkOffset.h"
#include "itkNeighborhoodAlgorithm.h"
#include "itkShapedNeighborhoodIterator.h"
#include "itkZeroFluxNeumannBoundaryCondition.h"

/*
 *
 * This code was contributed in the Insight Journal paper:
 * "Efficient implementation of kernel filtering"
 * by Beare R., Lehmann G
 * http://hdl.handle.net/1926/555
 * http://www.insight-journal.org/browse/publication/160
 *
 */


namespace itk
{
template< typename TIterator >
TIterator *
setConnectivityEarlyBox(TIterator *it, bool fullyConnected = false)
{
  // activate the "previous" neighbours
  typename TIterator::OffsetType offset;
  it->ClearActiveList();
  if ( !fullyConnected )
    {
    // only activate the neighbors that are face connected
    // to the current pixel. do not include the center pixel
    offset.Fill(0);
    for ( unsigned int d = 0; d < TIterator::Dimension; ++d )
      {
      offset[d] = -1;
      it->ActivateOffset(offset);
      offset[d] = 0;
      }
    }
  else
    {
    // activate all neighbors that are face+edge+vertex
    // connected to the current pixel. do not include the center pixel
    unsigned int centerIndex = it->GetCenterNeighborhoodIndex();
    for ( unsigned int d = 0; d < centerIndex; d++ )
      {
      offset = it->GetOffset(d);
      // check for positives in any dimension
      bool keep = true;
      for ( unsigned int i = 0; i < TIterator::Dimension; i++ )
        {
        if ( offset[i] > 0 )
          {
          keep = false;
          break;
          }
        }
      if ( keep )
        {
        it->ActivateOffset(offset);
        }
      }
    offset.Fill(0);
    it->DeactivateOffset(offset);
    }
  return it;
}

template< typename TInputImage, typename TOutputImage >
void
BoxAccumulateFunction(const TInputImage *inputImage,
                      const TOutputImage *outputImage,
                      typename TInputImage::RegionType inputRegion,
                      typename TOutputImage::RegionType outputRegion,
                      ProgressReporter & progress)
{
  // typedefs
  typedef TInputImage                      InputImageType;
  typedef typename TInputImage::OffsetType OffsetType;
  typedef TOutputImage                     OutputImageType;
  typedef typename TOutputImage::PixelType OutputPixelType;

  typedef ImageRegionConstIterator< TInputImage > InputIterator;

  typedef ShapedNeighborhoodIterator< TOutputImage > NOutputIterator;
  InputIterator inIt(inputImage, inputRegion);
  typename TInputImage::SizeType kernelRadius;
  kernelRadius.Fill(1);

  NOutputIterator noutIt(kernelRadius, outputImage, outputRegion);
  // this iterator is fully connected
  setConnectivityEarlyBox(&noutIt, true);

  ConstantBoundaryCondition< OutputImageType > oBC;
  oBC.SetConstant(NumericTraits< OutputPixelType >::ZeroValue() );
  noutIt.OverrideBoundaryCondition(&oBC);
  // This uses several iterators. An alternative and probably better
  // approach would be to copy the input to the output and convolve
  // with the following weights (in 2D)
  //   -(dim - 1)  1
  //       1       1
  // The result of each convolution needs to get written back to the
  // image being convolved so that the accumulation propagates
  // This should be implementable with neighborhood operators.

  std::vector< int > Weights;
  typename NOutputIterator::ConstIterator sIt;
  for ( typename NOutputIterator::IndexListType::const_iterator idxIt = noutIt.GetActiveIndexList().begin();
        idxIt != noutIt.GetActiveIndexList().end();
        idxIt++ )
    {
    OffsetType offset = noutIt.GetOffset(*idxIt);
    int        w = -1;
    for ( unsigned int k = 0; k < InputImageType::ImageDimension; k++ )
      {
      if ( offset[k] != 0 )
        {
        w *= offset[k];
        }
      }
//     std::cout << offset << "  " << w << std::endl;
    Weights.push_back(w);
    }

  for ( inIt.GoToBegin(), noutIt.GoToBegin(); !noutIt.IsAtEnd(); ++inIt, ++noutIt )
    {
    OutputPixelType Sum = 0;
    int             k;
    for ( k = 0, sIt = noutIt.Begin(); !sIt.IsAtEnd(); ++sIt, ++k )
      {
      Sum += sIt.Get() * Weights[k];
      }
    noutIt.SetCenterPixel( Sum + inIt.Get() );
    progress.CompletedPixel();
    }
}

// a function to generate corners of arbitrary dimension box
template< typename ImType >
std::vector< typename ImType::OffsetType > CornerOffsets(const ImType *im)
{
  typedef ShapedNeighborhoodIterator< ImType > NIterator;
  typename ImType::SizeType unitradius;
  unitradius.Fill(1);
  NIterator    N1( unitradius, im, im->GetRequestedRegion() );
  unsigned int centerIndex = N1.GetCenterNeighborhoodIndex();
  typename NIterator::OffsetType offset;
  std::vector< typename ImType::OffsetType > result;
  for ( unsigned int d = 0; d < centerIndex * 2 + 1; d++ )
    {
    offset = N1.GetOffset(d);
    // check whether this is a corner - corners have no zeros
    bool corner = true;
    for ( unsigned int k = 0; k < ImType::ImageDimension; k++ )
      {
      if ( offset[k] == 0 )
        {
        corner = false;
        break;
        }
      }
    if ( corner )
      {
      result.push_back(offset);
      }
    }
  return ( result );
}

template< typename TInputImage, typename TOutputImage >
void
BoxMeanCalculatorFunction(const TInputImage *accImage,
                          TOutputImage *outputImage,
                          typename TInputImage::RegionType inputRegion,
                          typename TOutputImage::RegionType outputRegion,
                          typename TInputImage::SizeType Radius,
                          ProgressReporter & progress)
{
  // typedefs
  typedef TInputImage                           InputImageType;
  typedef typename TInputImage::RegionType      RegionType;
  typedef typename TInputImage::SizeType        SizeType;
  typedef typename TInputImage::IndexType       IndexType;
  typedef typename TInputImage::OffsetType      OffsetType;
  typedef TOutputImage                          OutputImageType;
  typedef typename TOutputImage::PixelType      OutputPixelType;
  // use the face generator for speed
  typedef NeighborhoodAlgorithm::ImageBoundaryFacesCalculator< InputImageType > FaceCalculatorType;
  typedef typename FaceCalculatorType::FaceListType                             FaceListType;
  typedef typename FaceCalculatorType::FaceListType::iterator                   FaceListTypeIt;
  FaceCalculatorType faceCalculator;

  FaceListType                                    faceList;
  FaceListTypeIt                                  fit;
  ZeroFluxNeumannBoundaryCondition< TInputImage > nbc;

  // this process is actually slightly asymmetric because we need to
  // subtract rectangles that are next to our kernel, not overlapping it
  SizeType kernelSize;
  SizeType internalRadius;
  SizeType RegionLimit;

  IndexType RegionStart = inputRegion.GetIndex();
  for ( unsigned int i = 0; i < TInputImage::ImageDimension; i++ )
    {
    kernelSize[i] = Radius[i] * 2 + 1;
    internalRadius[i] = Radius[i] + 1;
    RegionLimit[i] = inputRegion.GetSize()[i] + RegionStart[i] - 1;
    }

  typedef typename NumericTraits< OutputPixelType >::RealType AccPixType;
  // get a set of offsets to corners for a unit hypercube in this image
  std::vector< OffsetType > UnitCorners = CornerOffsets< TInputImage >(accImage);
  std::vector< OffsetType > RealCorners;
  std::vector< AccPixType > Weights;
  // now compute the weights
  for ( unsigned int k = 0; k < UnitCorners.size(); k++ )
    {
    int        prod = 1;
    OffsetType ThisCorner;
    for ( unsigned int i = 0; i < TInputImage::ImageDimension; i++ )
      {
      prod *= UnitCorners[k][i];
      if ( UnitCorners[k][i] > 0 )
        {
        ThisCorner[i] = Radius[i];
        }
      else
        {
        ThisCorner[i] = -( Radius[i] + 1 );
        }
      }
    Weights.push_back( (AccPixType)prod );
    RealCorners.push_back(ThisCorner);
    }

  faceList = faceCalculator(accImage, outputRegion, internalRadius);
  // start with the body region
  for ( fit = faceList.begin(); fit != faceList.end(); ++fit )
    {
    if ( fit == faceList.begin() )
      {
      // this is the body region. This is meant to be an optimized
      // version that doesn't use neighborhood regions
      // compute the various offsets
      AccPixType pixelscount = 1;
      for ( unsigned int i = 0; i < TInputImage::ImageDimension; i++ )
        {
        pixelscount *= (AccPixType)( 2 * Radius[i] + 1 );
        }

      typedef ImageRegionIterator< OutputImageType >     OutputIteratorType;
      typedef ImageRegionConstIterator< InputImageType > InputIteratorType;

      typedef std::vector< InputIteratorType > CornerItVecType;
      CornerItVecType CornerItVec;
      // set up the iterators for each corner
      for ( unsigned int k = 0; k < RealCorners.size(); k++ )
        {
        typename InputImageType::RegionType tReg = ( *fit );
        tReg.SetIndex(tReg.GetIndex() + RealCorners[k]);
        InputIteratorType tempIt(accImage, tReg);
        tempIt.GoToBegin();
        CornerItVec.push_back(tempIt);
        }
      // set up the output iterator
      OutputIteratorType oIt(outputImage, *fit);
      // now do the work
      for ( oIt.GoToBegin(); !oIt.IsAtEnd(); ++oIt )
        {
        AccPixType Sum = 0;
        // check each corner
        for ( unsigned int k = 0; k < CornerItVec.size(); k++ )
          {
          Sum += Weights[k] * CornerItVec[k].Get();
          // increment each corner iterator
          ++( CornerItVec[k] );
          }
        oIt.Set( static_cast< OutputPixelType >( Sum / pixelscount ) );
        progress.CompletedPixel();
        }
      }
    else
      {
      // now we need to deal with the border regions
      typedef ImageRegionIteratorWithIndex< OutputImageType > OutputIteratorType;
      OutputIteratorType oIt(outputImage, *fit);
      // now do the work
      for ( oIt.GoToBegin(); !oIt.IsAtEnd(); ++oIt )
        {
        // figure out the number of pixels in the box by creating an
        // equivalent region and cropping - this could probably be
        // included in the loop below.
        RegionType currentKernelRegion;
        currentKernelRegion.SetSize(kernelSize);
        // compute the region's index
        IndexType kernelRegionIdx = oIt.GetIndex();
        IndexType CentIndex = kernelRegionIdx;
        for ( unsigned int i = 0; i < TInputImage::ImageDimension; i++ )
          {
          kernelRegionIdx[i] -= Radius[i];
          }
        currentKernelRegion.SetIndex(kernelRegionIdx);
        currentKernelRegion.Crop(inputRegion);
        OffsetValueType edgepixelscount = currentKernelRegion.GetNumberOfPixels();
        AccPixType Sum = 0;
        // rules are : for each corner,
        //               for each dimension
        //                  if dimension offset is positive -> this is
        //                  a leading edge. Crop if outside the input
        //                  region
        //                  if dimension offset is negative -> this is
        //                  a trailing edge. Ignore if it is outside
        //                  image region
        for ( unsigned int k = 0; k < RealCorners.size(); k++ )
          {
          IndexType ThisCorner = CentIndex + RealCorners[k];
          bool      IncludeCorner = true;
          for ( unsigned int j = 0; j < TInputImage::ImageDimension; j++ )
            {
            if ( UnitCorners[k][j] > 0 )
              {
              // leading edge - crop it
              if ( ThisCorner[j] > static_cast< OffsetValueType >( RegionLimit[j] ) )
                {
                ThisCorner[j] = static_cast< OffsetValueType >( RegionLimit[j] );
                }
              }
            else
              {
              // trailing edge - check bounds
              if ( ThisCorner[j] < RegionStart[j] )
                {
                IncludeCorner = false;
                break;
                }
              }
            }
          if ( IncludeCorner )
            {
            Sum += accImage->GetPixel(ThisCorner) * Weights[k];
            }
          }

        oIt.Set( static_cast< OutputPixelType >( Sum / (AccPixType)edgepixelscount ) );
        progress.CompletedPixel();
        }
      }
    }
}

template< typename TInputImage, typename TOutputImage >
void
BoxSigmaCalculatorFunction(const TInputImage *accImage,
                           TOutputImage *outputImage,
                           typename TInputImage::RegionType inputRegion,
                           typename TOutputImage::RegionType outputRegion,
                           typename TInputImage::SizeType Radius,
                           ProgressReporter & progress)
{
  // typedefs
  typedef TInputImage                           InputImageType;
  typedef typename TInputImage::RegionType      RegionType;
  typedef typename TInputImage::SizeType        SizeType;
  typedef typename TInputImage::IndexType       IndexType;
  typedef typename TInputImage::OffsetType      OffsetType;
  typedef TOutputImage                          OutputImageType;
  typedef typename TOutputImage::PixelType      OutputPixelType;
  typedef typename TInputImage::PixelType       InputPixelType;
  // use the face generator for speed
  typedef typename NeighborhoodAlgorithm::ImageBoundaryFacesCalculator< InputImageType > FaceCalculatorType;
  typedef typename FaceCalculatorType::FaceListType                                      FaceListType;
  typedef typename FaceCalculatorType::FaceListType::iterator                            FaceListTypeIt;
  FaceCalculatorType faceCalculator;

  FaceListType                                    faceList;
  FaceListTypeIt                                  fit;
  ZeroFluxNeumannBoundaryCondition< TInputImage > nbc;

  // this process is actually slightly asymmetric because we need to
  // subtract rectangles that are next to our kernel, not overlapping it
  SizeType  kernelSize;
  SizeType  internalRadius;
  SizeType  RegionLimit;
  IndexType RegionStart = inputRegion.GetIndex();
  for ( unsigned int i = 0; i < TInputImage::ImageDimension; i++ )
    {
    kernelSize[i] = Radius[i] * 2 + 1;
    internalRadius[i] = Radius[i] + 1;
    RegionLimit[i] = inputRegion.GetSize()[i] + RegionStart[i] - 1;
    }

  typedef typename NumericTraits< OutputPixelType >::RealType AccPixType;
  // get a set of offsets to corners for a unit hypercube in this image
  std::vector< OffsetType > UnitCorners = CornerOffsets< TInputImage >(accImage);
  std::vector< OffsetType > RealCorners;
  std::vector< AccPixType > Weights;
  // now compute the weights
  for ( unsigned int k = 0; k < UnitCorners.size(); k++ )
    {
    int        prod = 1;
    OffsetType ThisCorner;
    for ( unsigned int i = 0; i < TInputImage::ImageDimension; i++ )
      {
      prod *= UnitCorners[k][i];
      if ( UnitCorners[k][i] > 0 )
        {
        ThisCorner[i] = Radius[i];
        }
      else
        {
        ThisCorner[i] = -( Radius[i] + 1 );
        }
      }
    Weights.push_back( (AccPixType)prod );
    RealCorners.push_back(ThisCorner);
    }

  faceList = faceCalculator(accImage, outputRegion, internalRadius);
  // start with the body region
  for ( fit = faceList.begin(); fit != faceList.end(); ++fit )
    {
    if ( fit == faceList.begin() )
      {
      // this is the body region. This is meant to be an optimized
      // version that doesn't use neighborhood regions
      // compute the various offsets
      AccPixType pixelscount = 1;
      for ( unsigned int i = 0; i < TInputImage::ImageDimension; i++ )
        {
        pixelscount *= (AccPixType)( 2 * Radius[i] + 1 );
        }

      typedef ImageRegionIterator< OutputImageType >     OutputIteratorType;
      typedef ImageRegionConstIterator< InputImageType > InputIteratorType;

      typedef std::vector< InputIteratorType > CornerItVecType;
      CornerItVecType CornerItVec;
      // set up the iterators for each corner
      for ( unsigned int k = 0; k < RealCorners.size(); k++ )
        {
        typename InputImageType::RegionType tReg = ( *fit );
        tReg.SetIndex(tReg.GetIndex() + RealCorners[k]);
        InputIteratorType tempIt(accImage, tReg);
        tempIt.GoToBegin();
        CornerItVec.push_back(tempIt);
        }
      // set up the output iterator
      OutputIteratorType oIt(outputImage, *fit);
      // now do the work
      for ( oIt.GoToBegin(); !oIt.IsAtEnd(); ++oIt )
        {
        AccPixType Sum = 0;
        AccPixType SquareSum = 0;
        // check each corner
        for ( unsigned int k = 0; k < CornerItVec.size(); k++ )
          {
          const InputPixelType & i = CornerItVec[k].Get();
          Sum += Weights[k] * i[0];
          SquareSum += Weights[k] * i[1];
          // increment each corner iterator
          ++( CornerItVec[k] );
          }

        oIt.Set( static_cast< OutputPixelType >( std::sqrt( ( SquareSum - Sum * Sum / pixelscount ) / ( pixelscount - 1 ) ) ) );
        progress.CompletedPixel();
        }
      }
    else
      {
      // now we need to deal with the border regions
      typedef ImageRegionIteratorWithIndex< OutputImageType > OutputIteratorType;
      OutputIteratorType oIt(outputImage, *fit);
      // now do the work
      for ( oIt.GoToBegin(); !oIt.IsAtEnd(); ++oIt )
        {
        // figure out the number of pixels in the box by creating an
        // equivalent region and cropping - this could probably be
        // included in the loop below.
        RegionType currentKernelRegion;
        currentKernelRegion.SetSize(kernelSize);
        // compute the region's index
        IndexType kernelRegionIdx = oIt.GetIndex();
        IndexType CentIndex = kernelRegionIdx;
        for ( unsigned int i = 0; i < TInputImage::ImageDimension; i++ )
          {
          kernelRegionIdx[i] -= Radius[i];
          }
        currentKernelRegion.SetIndex(kernelRegionIdx);
        currentKernelRegion.Crop(inputRegion);
        SizeValueType edgepixelscount = currentKernelRegion.GetNumberOfPixels();
        AccPixType Sum = 0;
        AccPixType SquareSum = 0;
        // rules are : for each corner,
        //               for each dimension
        //                  if dimension offset is positive -> this is
        //                  a leading edge. Crop if outside the input
        //                  region
        //                  if dimension offset is negative -> this is
        //                  a trailing edge. Ignore if it is outside
        //                  image region
        for ( unsigned int k = 0; k < RealCorners.size(); k++ )
          {
          IndexType ThisCorner = CentIndex + RealCorners[k];
          bool      IncludeCorner = true;
          for ( unsigned int j = 0; j < TInputImage::ImageDimension; j++ )
            {
            if ( UnitCorners[k][j] > 0 )
              {
              // leading edge - crop it
              if ( ThisCorner[j] > static_cast< OffsetValueType >( RegionLimit[j] ) )
                {
                ThisCorner[j] = static_cast< OffsetValueType >( RegionLimit[j] );
                }
              }
            else
              {
              // trailing edge - check bounds
              if ( ThisCorner[j] < RegionStart[j] )
                {
                IncludeCorner = false;
                break;
                }
              }
            }
          if ( IncludeCorner )
            {
            const InputPixelType & i = accImage->GetPixel(ThisCorner);
            Sum += Weights[k] * i[0];
            SquareSum += Weights[k] * i[1];
            }
          }

        oIt.Set( static_cast< OutputPixelType >( std::sqrt( ( SquareSum - Sum * Sum
                                                             / edgepixelscount ) / ( edgepixelscount - 1 ) ) ) );
        progress.CompletedPixel();
        }
      }
    }
}

template< typename TInputImage, typename TOutputImage >
void
BoxSquareAccumulateFunction(const TInputImage *inputImage,
                            TOutputImage *outputImage,
                            typename TInputImage::RegionType inputRegion,
                            typename TOutputImage::RegionType outputRegion,
                            ProgressReporter & progress)
{
  // typedefs
  typedef TInputImage                         InputImageType;
  typedef typename TInputImage::OffsetType    OffsetType;
  typedef TOutputImage                        OutputImageType;
  typedef typename TOutputImage::PixelType    OutputPixelType;
  typedef typename OutputPixelType::ValueType ValueType;
  typedef typename TInputImage::PixelType     InputPixelType;

  typedef ImageRegionConstIterator< TInputImage > InputIterator;

  typedef ShapedNeighborhoodIterator< TOutputImage > NOutputIterator;
  InputIterator inIt(inputImage, inputRegion);
  typename TInputImage::SizeType kernelRadius;
  kernelRadius.Fill(1);

  NOutputIterator noutIt(kernelRadius, outputImage, outputRegion);
  // this iterator is fully connected
  setConnectivityEarlyBox(&noutIt, true);

  ConstantBoundaryCondition< OutputImageType > oBC;
  oBC.SetConstant(NumericTraits< OutputPixelType >::ZeroValue() );
  noutIt.OverrideBoundaryCondition(&oBC);
  // This uses several iterators. An alternative and probably better
  // approach would be to copy the input to the output and convolve
  // with the following weights (in 2D)
  //   -(dim - 1)  1
  //       1       1
  // The result of each convolution needs to get written back to the
  // image being convolved so that the accumulation propagates
  // This should be implementable with neighborhood operators.

  std::vector< int > Weights;
  typename NOutputIterator::ConstIterator sIt;
  for ( typename NOutputIterator::IndexListType::const_iterator idxIt = noutIt.GetActiveIndexList().begin();
        idxIt != noutIt.GetActiveIndexList().end();
        idxIt++ )
    {
    OffsetType offset = noutIt.GetOffset(*idxIt);
    int        w = -1;
    for ( unsigned int k = 0; k < InputImageType::ImageDimension; k++ )
      {
      if ( offset[k] != 0 )
        {
        w *= offset[k];
        }
      }
    Weights.push_back(w);
    }

  for ( inIt.GoToBegin(), noutIt.GoToBegin(); !noutIt.IsAtEnd(); ++inIt, ++noutIt )
    {
    ValueType Sum = 0;
    ValueType SquareSum = 0;
    int       k;
    for ( k = 0, sIt = noutIt.Begin(); !sIt.IsAtEnd(); ++sIt, ++k )
      {
      const OutputPixelType & v = sIt.Get();
      Sum += v[0] * Weights[k];
      SquareSum += v[1] * Weights[k];
      }
    OutputPixelType        o;
    const InputPixelType & i = inIt.Get();
    o[0] = Sum + i;
    o[1] = SquareSum + i * i;
    noutIt.SetCenterPixel(o);
    progress.CompletedPixel();
    }
}
} //namespace itk

#endif