This file is indexed.

/usr/include/ITK-4.9/itkCompositeTransform.hxx is in libinsighttoolkit4-dev 4.9.0-4ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkCompositeTransform_hxx
#define itkCompositeTransform_hxx

#include "itkCompositeTransform.h"

namespace itk
{


template
<typename TParametersValueType, unsigned int NDimensions>
CompositeTransform<TParametersValueType, NDimensions>::CompositeTransform()
{
  this->m_TransformsToOptimizeFlags.clear();
  this->m_TransformsToOptimizeQueue.clear();
  this->m_PreviousTransformsToOptimizeUpdateTime = 0;
}


template
<typename TParametersValueType, unsigned int NDimensions>
CompositeTransform<TParametersValueType, NDimensions>::
~CompositeTransform()
{
}


template
<typename TParametersValueType, unsigned int NDimensions>
typename CompositeTransform<TParametersValueType, NDimensions>::TransformCategoryType
CompositeTransform<TParametersValueType, NDimensions>
::GetTransformCategory() const
{
  // Check if linear
  bool isLinearTransform = this->IsLinear();
  if( isLinearTransform )
    {
    return Self::Linear;
    }

  // Check if displacement field
  bool isDisplacementFieldTransform = true;
  for( signed long tind = static_cast<signed long>( this->GetNumberOfTransforms() ) - 1; tind >= 0; tind-- )
    {
    if( this->GetNthTransformToOptimize( tind ) &&
      ( this->GetNthTransformConstPointer( tind )->GetTransformCategory() != Self::DisplacementField ) )
      {
      isDisplacementFieldTransform = false;
      break;
      }
    }

  if( isDisplacementFieldTransform )
    {
    return Self::DisplacementField;
    }
  else
    {
    return Self::UnknownTransformCategory;
    }
}


template
<typename TParametersValueType, unsigned int NDimensions>
typename CompositeTransform<TParametersValueType, NDimensions>
::OutputPointType
CompositeTransform<TParametersValueType, NDimensions>
::TransformPoint( const InputPointType& inputPoint ) const
{

  /* Apply in reverse queue order.  */
  typename TransformQueueType::const_iterator it( this->m_TransformQueue.end() );
  const typename TransformQueueType::const_iterator beginit( this->m_TransformQueue.begin() );
  OutputPointType outputPoint( inputPoint );
  do
    {
    it--;
    outputPoint = (*it)->TransformPoint( outputPoint );
    }
  while( it != beginit );
  return outputPoint;
}


template<typename TParametersValueType, unsigned int NDimensions>
typename CompositeTransform<TParametersValueType, NDimensions>
::OutputVectorType
CompositeTransform<TParametersValueType, NDimensions>
::TransformVector( const InputVectorType & inputVector ) const
{
  OutputVectorType outputVector( inputVector );

  typename TransformQueueType::const_iterator it;
  /* Apply in reverse queue order.  */
  it = this->m_TransformQueue.end();

  do
    {
    it--;
    outputVector = (*it)->TransformVector( outputVector );
    }
  while( it != this->m_TransformQueue.begin() );

  return outputVector;
}


template<typename TParametersValueType, unsigned int NDimensions>
typename CompositeTransform<TParametersValueType, NDimensions>
::OutputVectorType
CompositeTransform<TParametersValueType, NDimensions>
::TransformVector( const InputVectorType & inputVector, const InputPointType & inputPoint ) const
{
  OutputVectorType outputVector( inputVector );
  OutputPointType outputPoint( inputPoint );

  typename TransformQueueType::const_iterator it;
  /* Apply in reverse queue order.  */
  it = this->m_TransformQueue.end();

  do
    {
    it--;
    outputVector = (*it)->TransformVector( outputVector, outputPoint );
    outputPoint = (*it)->TransformPoint( outputPoint );
    }
  while( it != this->m_TransformQueue.begin() );

  return outputVector;
}


template<typename TParametersValueType, unsigned int NDimensions>
typename CompositeTransform<TParametersValueType, NDimensions>
::OutputVnlVectorType
CompositeTransform<TParametersValueType, NDimensions>
::TransformVector( const InputVnlVectorType & inputVector, const InputPointType & inputPoint ) const
{
  OutputVnlVectorType outputVector( inputVector );
  OutputPointType outputPoint( inputPoint );

  typename TransformQueueType::const_iterator it;
  /* Apply in reverse queue order.  */
  it = this->m_TransformQueue.end();

  do
    {
    it--;
    outputVector = (*it)->TransformVector( outputVector, outputPoint );
    outputPoint = (*it)->TransformPoint( outputPoint );
    }
  while( it != this->m_TransformQueue.begin() );

  return outputVector;
}


template<typename TParametersValueType, unsigned int NDimensions>
typename CompositeTransform<TParametersValueType, NDimensions>
::OutputVnlVectorType
CompositeTransform<TParametersValueType, NDimensions>
::TransformVector( const InputVnlVectorType & inputVector) const
{
  OutputVnlVectorType outputVector( inputVector );

  typename TransformQueueType::const_iterator it;
  /* Apply in reverse queue order.  */
  it = this->m_TransformQueue.end();

  do
    {
    it--;
    outputVector = (*it)->TransformVector( outputVector );
    }
  while( it != this->m_TransformQueue.begin() );

  return outputVector;
}


template<typename TParametersValueType, unsigned int NDimensions>
typename CompositeTransform<TParametersValueType, NDimensions>
::OutputVectorPixelType
CompositeTransform<TParametersValueType, NDimensions>
::TransformVector( const InputVectorPixelType & inputVector ) const
{
  OutputVectorPixelType outputVector( inputVector );

  typename TransformQueueType::const_iterator it;
  /* Apply in reverse queue order.  */
  it = this->m_TransformQueue.end();

  do
    {
    it--;
    outputVector = (*it)->TransformVector( outputVector );
    }
  while( it != this->m_TransformQueue.begin() );

  return outputVector;
}


template<typename TParametersValueType, unsigned int NDimensions>
typename CompositeTransform<TParametersValueType, NDimensions>
::OutputVectorPixelType
CompositeTransform<TParametersValueType, NDimensions>
::TransformVector( const InputVectorPixelType & inputVector, const InputPointType & inputPoint ) const
{
  OutputVectorPixelType outputVector( inputVector );
  OutputPointType outputPoint( inputPoint );

  typename TransformQueueType::const_iterator it;
  /* Apply in reverse queue order.  */
  it = this->m_TransformQueue.end();

  do
    {
    it--;
    outputVector = (*it)->TransformVector( outputVector, outputPoint );
    outputPoint = (*it)->TransformPoint( outputPoint );
    }
  while( it != this->m_TransformQueue.begin() );

  return outputVector;
}


template<typename TParametersValueType, unsigned int NDimensions>
typename CompositeTransform<TParametersValueType, NDimensions>
::OutputCovariantVectorType
CompositeTransform<TParametersValueType, NDimensions>
::TransformCovariantVector( const InputCovariantVectorType & inputVector ) const
{
  OutputCovariantVectorType outputVector( inputVector );

  typename TransformQueueType::const_iterator it;
  /* Apply in reverse queue order.  */
  it = this->m_TransformQueue.end();

  do
    {
    it--;
    outputVector = (*it)->TransformCovariantVector( outputVector );
    }
  while( it != this->m_TransformQueue.begin() );

  return outputVector;
}


template<typename TParametersValueType, unsigned int NDimensions>
typename CompositeTransform<TParametersValueType, NDimensions>
::OutputCovariantVectorType
CompositeTransform<TParametersValueType, NDimensions>
::TransformCovariantVector( const InputCovariantVectorType & inputVector, const InputPointType & inputPoint ) const
{
  OutputCovariantVectorType outputVector( inputVector );
  OutputPointType outputPoint( inputPoint );

  typename TransformQueueType::const_iterator it;
  /* Apply in reverse queue order.  */
  it = this->m_TransformQueue.end();

  do
    {
    it--;
    outputVector = (*it)->TransformCovariantVector( outputVector, outputPoint );
    outputPoint = (*it)->TransformPoint( outputPoint );
    }
  while( it != this->m_TransformQueue.begin() );

  return outputVector;
}


template<typename TParametersValueType, unsigned int NDimensions>
typename CompositeTransform<TParametersValueType, NDimensions>
::OutputVectorPixelType
CompositeTransform<TParametersValueType, NDimensions>
::TransformCovariantVector( const InputVectorPixelType & inputVector ) const
{
  OutputVectorPixelType outputVector( inputVector );

  typename TransformQueueType::const_iterator it;
  /* Apply in reverse queue order.  */
  it = this->m_TransformQueue.end();

  do
    {
    it--;
    outputVector = (*it)->TransformCovariantVector( outputVector );
    }
  while( it != this->m_TransformQueue.begin() );

  return outputVector;
}


template<typename TParametersValueType, unsigned int NDimensions>
typename CompositeTransform<TParametersValueType, NDimensions>
::OutputVectorPixelType
CompositeTransform<TParametersValueType, NDimensions>
::TransformCovariantVector( const InputVectorPixelType & inputVector, const InputPointType & inputPoint ) const
{
  OutputVectorPixelType outputVector( inputVector );
  OutputPointType outputPoint( inputPoint );

  typename TransformQueueType::const_iterator it;
  /* Apply in reverse queue order.  */
  it = this->m_TransformQueue.end();

  do
    {
    it--;
    outputVector = (*it)->TransformCovariantVector( outputVector, outputPoint );
    outputPoint = (*it)->TransformPoint( outputPoint );
    }
  while( it != this->m_TransformQueue.begin() );

  return outputVector;
}


template<typename TParametersValueType, unsigned int NDimensions>
typename CompositeTransform<TParametersValueType, NDimensions>
::OutputDiffusionTensor3DType
CompositeTransform<TParametersValueType, NDimensions>
::TransformDiffusionTensor3D( const InputDiffusionTensor3DType & inputTensor, const InputPointType & inputPoint ) const
{
  OutputDiffusionTensor3DType outputTensor( inputTensor );
  OutputPointType outputPoint( inputPoint );

  typename TransformQueueType::const_iterator it;
  /* Apply in reverse queue order.  */
  it = this->m_TransformQueue.end();

  do
    {
    it--;
    outputTensor = (*it)->TransformDiffusionTensor3D( outputTensor, outputPoint );
    outputPoint = (*it)->TransformPoint( outputPoint );
    }
  while( it != this->m_TransformQueue.begin() );

  return outputTensor;
}


template<typename TParametersValueType, unsigned int NDimensions>
typename CompositeTransform<TParametersValueType, NDimensions>
::OutputVectorPixelType
CompositeTransform<TParametersValueType, NDimensions>
::TransformDiffusionTensor3D( const InputVectorPixelType & inputTensor, const InputPointType & inputPoint ) const
{
  OutputVectorPixelType outputTensor( inputTensor );
  OutputPointType outputPoint( inputPoint );

  typename TransformQueueType::const_iterator it;
  /* Apply in reverse queue order.  */
  it = this->m_TransformQueue.end();

  do
    {
    it--;
    outputTensor = (*it)->TransformDiffusionTensor3D( outputTensor, outputPoint );
    outputPoint = (*it)->TransformPoint( outputPoint );
    }
  while( it != this->m_TransformQueue.begin() );

  return outputTensor;
}


template<typename TParametersValueType, unsigned int NDimensions>
typename CompositeTransform<TParametersValueType, NDimensions>
::OutputDiffusionTensor3DType
CompositeTransform<TParametersValueType, NDimensions>
::TransformDiffusionTensor3D( const InputDiffusionTensor3DType & inputTensor ) const
{
  OutputDiffusionTensor3DType outputTensor( inputTensor );

  typename TransformQueueType::const_iterator it;
  /* Apply in reverse queue order.  */
  it = this->m_TransformQueue.end();

  do
    {
    it--;
    outputTensor = (*it)->TransformDiffusionTensor3D( outputTensor );
    }
  while( it != this->m_TransformQueue.begin() );

  return outputTensor;
}


template<typename TParametersValueType, unsigned int NDimensions>
typename CompositeTransform<TParametersValueType, NDimensions>
::OutputVectorPixelType
CompositeTransform<TParametersValueType, NDimensions>
::TransformDiffusionTensor3D( const InputVectorPixelType & inputTensor ) const
{
  OutputVectorPixelType outputTensor( inputTensor );

  typename TransformQueueType::const_iterator it;
  /* Apply in reverse queue order.  */
  it = this->m_TransformQueue.end();

  do
    {
    it--;
    outputTensor = (*it)->TransformDiffusionTensor3D( outputTensor );
    }
  while( it != this->m_TransformQueue.begin() );

  return outputTensor;
}


template<typename TParametersValueType, unsigned int NDimensions>
typename CompositeTransform<TParametersValueType, NDimensions>
::OutputSymmetricSecondRankTensorType
CompositeTransform<TParametersValueType, NDimensions>
::TransformSymmetricSecondRankTensor( const InputSymmetricSecondRankTensorType & inputTensor, const InputPointType & inputPoint ) const
{
  OutputSymmetricSecondRankTensorType outputTensor( inputTensor );
  OutputPointType outputPoint( inputPoint );

  typename TransformQueueType::const_iterator it;
  /* Apply in reverse queue order.  */
  it = this->m_TransformQueue.end();

  do
    {
    it--;
    outputTensor = (*it)->TransformSymmetricSecondRankTensor( outputTensor, outputPoint );
    outputPoint = (*it)->TransformPoint( outputPoint );
    }
  while( it != this->m_TransformQueue.begin() );

  return outputTensor;
}


template<typename TParametersValueType, unsigned int NDimensions>
typename CompositeTransform<TParametersValueType, NDimensions>
::OutputVectorPixelType
CompositeTransform<TParametersValueType, NDimensions>
::TransformSymmetricSecondRankTensor( const InputVectorPixelType & inputTensor, const InputPointType & inputPoint ) const
{
  OutputVectorPixelType outputTensor( inputTensor );
  OutputPointType outputPoint( inputPoint );

  typename TransformQueueType::const_iterator it;
  /* Apply in reverse queue order.  */
  it = this->m_TransformQueue.end();

  do
    {
    it--;
    outputTensor = (*it)->TransformSymmetricSecondRankTensor( outputTensor, outputPoint );
    outputPoint = (*it)->TransformPoint( outputPoint );
    }
  while( it != this->m_TransformQueue.begin() );

  return outputTensor;
}


template<typename TParametersValueType, unsigned int NDimensions>
typename CompositeTransform<TParametersValueType, NDimensions>
::OutputSymmetricSecondRankTensorType
CompositeTransform<TParametersValueType, NDimensions>
::TransformSymmetricSecondRankTensor( const InputSymmetricSecondRankTensorType & inputTensor ) const
{
  OutputSymmetricSecondRankTensorType outputTensor( inputTensor );

  typename TransformQueueType::const_iterator it;
  /* Apply in reverse queue order.  */
  it = this->m_TransformQueue.end();

  do
    {
    it--;
    outputTensor = (*it)->TransformSymmetricSecondRankTensor( outputTensor );
    }
  while( it != this->m_TransformQueue.begin() );

  return outputTensor;
}


template<typename TParametersValueType, unsigned int NDimensions>
typename CompositeTransform<TParametersValueType, NDimensions>
::OutputVectorPixelType
CompositeTransform<TParametersValueType, NDimensions>
::TransformSymmetricSecondRankTensor( const InputVectorPixelType & inputTensor ) const
{
  OutputVectorPixelType outputTensor( inputTensor );

  typename TransformQueueType::const_iterator it;
  /* Apply in reverse queue order.  */
  it = this->m_TransformQueue.end();

  do
    {
    it--;
    outputTensor = (*it)->TransformSymmetricSecondRankTensor( outputTensor );
    }
  while( it != this->m_TransformQueue.begin() );

  return outputTensor;
}


template<typename TParametersValueType, unsigned int NDimensions>
bool
CompositeTransform<TParametersValueType, NDimensions>
::GetInverse( Self *inverse ) const
{
  typename TransformQueueType::const_iterator it;

  //NOTE: CompositeTransform delegagtes to
  //      individual transform for setting FixedParameters
  //      inverse->SetFixedParameters( this->GetFixedParameters() );
  inverse->ClearTransformQueue();
  for( it = this->m_TransformQueue.begin(); it != this->m_TransformQueue.end(); ++it )
    {
    TransformTypePointer inverseTransform = dynamic_cast<TransformType *>( ( ( *it )->GetInverseTransform() ).GetPointer() );
    if( !inverseTransform )
      {
      inverse->ClearTransformQueue();
      return false;
      }
    else
      {
      /* Push to front to reverse the transform order */
      inverse->PushFrontTransform( inverseTransform );
      }
    }

  /* Copy the optimization flags */
  inverse->m_TransformsToOptimizeFlags.clear();
  for( TransformsToOptimizeFlagsType::iterator ofit = this->m_TransformsToOptimizeFlags.begin(); ofit != this->m_TransformsToOptimizeFlags.end(); ofit++ )
    {
    inverse->m_TransformsToOptimizeFlags.push_front( *ofit );
    }

  return true;
}


template<typename TParametersValueType, unsigned int NDimensions>
typename CompositeTransform<TParametersValueType, NDimensions>
::InverseTransformBasePointer
CompositeTransform<TParametersValueType, NDimensions>
::GetInverseTransform() const
{
  /* This method can't be defined in Superclass because of the call to New() */
  Pointer inverseTransform = New();

  if( this->GetInverse( inverseTransform ) )
    {
    return inverseTransform.GetPointer();
    }
  else
    {
    return ITK_NULLPTR;
    }
}


template<typename TParametersValueType, unsigned int NDimensions>
void
CompositeTransform<TParametersValueType, NDimensions>
::ComputeJacobianWithRespectToParameters( const InputPointType & p, JacobianType & outJacobian ) const
{
  /* Returns a concatenated MxN array, holding the Jacobian of each sub
   * transform that is selected for optimization. The order is the same
   * as that in which they're applied, i.e. reverse order.
   * M rows = dimensionality of the transforms
   * N cols = total number of parameters in the selected sub transforms. */
  outJacobian.SetSize( NDimensions, this->GetNumberOfLocalParameters() );
  JacobianType jacobianWithRespectToPosition(NDimensions, NDimensions);
  this->ComputeJacobianWithRespectToParametersCachedTemporaries( p, outJacobian, jacobianWithRespectToPosition );
}

template<typename TParametersValueType, unsigned int NDimensions>
void
CompositeTransform<TParametersValueType, NDimensions>
::ComputeJacobianWithRespectToParametersCachedTemporaries( const InputPointType & p, JacobianType & outJacobian, JacobianType & jacobianWithRespectToPosition ) const
{
  //NOTE: This must have been done outside of outJacobian.SetSize( NDimensions, this->GetNumberOfLocalParameters() );
  //NOTE: assert( outJacobian.GetSize == ( NDimensions, this->GetNumberOfLocalParameters() ) )
  //NOTE: assert( jacobianWithRespectToPosition.GetSize == (NDimensions, NDimensions) )

  NumberOfParametersType offset = NumericTraits< NumberOfParametersType >::ZeroValue();

  OutputPointType transformedPoint( p );

  /*
   * Composite transform $T is composed of $T0(p0,x), $T1(p1,x) and $T2(p2, x) as:
   *
   * T(p0, p1, p2, x)
   * = T0(p0, T1(p1, T2(p2, x)))
   *
   * p0, p1, p2 are the transform parameters for transform T0, T1, T2
   * respectively.
   *
   * Let p = (p0, p1, p2).
   *  x2 = T2(p2, x).
   *  x1 = T1(p1, x2).
   *
   *
   * The following loop computes dT/dp:
   *
   * dT/dp
   * = (dT/dp0, dT/dp1, dT/dp2)
   * = ( dT0/dp0 | x1 ),
   *   ( dT0/dT1 | x1 ) * ( dT1/dp1 | x2 ),
   *   ( ( dT0/dT1 | x1 ) * ( dT1/dT2 | x2 ) * ( dT2/dp2 | x )
   *
   * In the first iteration, it computes
   *   dT2/dp2 | x
   *
   * In the second iteration, it computes
   *   dT1/dp1 | x2
   *
   *  and it computes
   *   dT1/dT2 | x2, and left multiplying to  dT2/dp2 | x
   *
   * In the third iteration, it computes
   *   dT0/dp0 | x1,
   *
   *  and it computes
   *   dT0/dT1 | x1, and left multiplying to
   *    ( dT1/dT2 | x2 ) * ( dT2/dp2 | x )
   *    and ( dT1/dp1 | x2 )
   *
   */
  for( signed long tind = (signed long) this->GetNumberOfTransforms() - 1;
       tind >= 0; --tind )
    {
    /* Get a raw pointer for efficiency, avoiding SmartPointer register/unregister */
    const TransformType * const transform = this->GetNthTransformConstPointer( tind );

    const NumberOfParametersType offsetLast = offset;

    if( this->GetNthTransformToOptimize( tind ) )
      {
      /* Copy from another matrix, element-by-element */
      /* The matrices are row-major, so block copy is less obviously
       * better */

      const NumberOfParametersType numberOfLocalParameters = transform->GetNumberOfLocalParameters();

      typename TransformType::JacobianType current_jacobian( NDimensions, numberOfLocalParameters );
      transform->ComputeJacobianWithRespectToParameters( transformedPoint, current_jacobian );
      outJacobian.update( current_jacobian, 0, offset );
      offset += numberOfLocalParameters;
      }

    /** The composite transform needs to compose previous jacobians
     *  (those closer to the originating point) with the current
     *  transform's jacobian.  We therefore update the previous
     *  jacobian by multiplying the current matrix jumping over the
     *  first transform. The matrix here refers to  dT/dx at the point.
     *  For example, in the affine transform, this is the affine matrix.
     *
     *  TODO: for general transform, there should be something like
     *  GetPartialDerivativeOfPointCoordinates
     *
     *  Also, noted the multiplication contains all the affine matrix from
     *  all transforms no matter they are going to be optimized or not
     */

    // update every old term by left multiplying dTk / dT{k-1}
    // do this before computing the transformedPoint for the next iteration
    if( offsetLast > 0 )
      {
      transform->ComputeJacobianWithRespectToPosition(transformedPoint, jacobianWithRespectToPosition);

      const JacobianType & old_j = outJacobian.extract(NDimensions, offsetLast, 0, 0);
      const JacobianType & update_j = jacobianWithRespectToPosition * old_j;

      outJacobian.update(update_j, 0, 0);

      // itkExceptionMacro(" To sort out with new ComputeJacobianWithRespectToPosition prototype ");
      }

    /* Transform the point so it's ready for next transform's Jacobian */
    transformedPoint = transform->TransformPoint( transformedPoint );
    }
}


template<typename TParametersValueType, unsigned int NDimensions>
const typename CompositeTransform<TParametersValueType, NDimensions>::ParametersType &
CompositeTransform<TParametersValueType, NDimensions>
::GetParameters() const
{
  const TransformQueueType & transforms = this->GetTransformsToOptimizeQueue();
  if( transforms.size() == 1 )
    {
    // Return directly to avoid copying. Most often we'll have only a single
    // active transform, so we'll end up here.
    return transforms[0]->GetParameters();
    }
  else
    {
    /* Resize destructively. But if it's already this size, nothing is done so
         * it's efficient. */
    this->m_Parameters.SetSize( this->GetNumberOfParameters() );

    NumberOfParametersType offset = NumericTraits< NumberOfParametersType >::ZeroValue();

    typename TransformQueueType::const_iterator it = transforms.end();

    do
      {
      it--;
      const ParametersType & subParameters = (*it)->GetParameters();
      /* use vnl_vector data_block() to get data ptr */
      std::copy(subParameters.data_block(),
                subParameters.data_block()+subParameters.Size(),
                &(this->m_Parameters.data_block() )[offset]);
      offset += subParameters.Size();

      }
    while( it != transforms.begin() );
    }

  return this->m_Parameters;
}


template<typename TParametersValueType, unsigned int NDimensions>
void
CompositeTransform<TParametersValueType, NDimensions>
::SetParameters(const ParametersType & inputParameters)
{
  /* We do not copy inputParameters into m_Parameters,
     * to avoid unnecessary copying. */

  /* Assumes input params are concatenation of the parameters of the
     sub transforms currently selected for optimization, in
     the order of the queue from begin() to end(). */
  TransformQueueType transforms = this->GetTransformsToOptimizeQueue();

  /* Verify proper input size. */
  if( inputParameters.Size() != this->GetNumberOfParameters() )
    {
    itkExceptionMacro(<< "Input parameter list size is not expected size. "
                      << inputParameters.Size() << " instead of "
                      << this->GetNumberOfParameters() << ".");
    }

  if( transforms.size() == 1 )
    {
    /* Avoid unnecessary copying. See comments below */
    if( &inputParameters == &this->m_Parameters )
      {
      transforms[0]->SetParameters( transforms[0]->GetParameters() );
      }
    else
      {
      transforms[0]->SetParameters(inputParameters);
      }
    }
  else
    {
    NumberOfParametersType offset = NumericTraits< NumberOfParametersType >::ZeroValue();
    typename TransformQueueType::iterator it = transforms.end();

    do
      {
      it--;
      /* If inputParams is same object as m_Parameters, we just pass
       * each sub-transforms own m_Parameters in. This is needed to
       * avoid unnecessary copying of parameters in the sub-transforms,
       * while still allowing SetParameters to do any oeprations on the
       * parameters to update member variable states. A hack. */
      if( &inputParameters == &this->m_Parameters )
        {
        (*it)->SetParameters( (*it)->GetParameters() );
        }
      else
        {
        const size_t parameterSize = (*it)->GetParameters().Size();
        (*it)->CopyInParameters(&(inputParameters.data_block() )[offset],
                                &(inputParameters.data_block() )[offset]+parameterSize );
        offset += parameterSize;
        }

      }
    while( it != transforms.begin() );
    }
}


template<typename TParametersValueType, unsigned int NDimensions>
const typename CompositeTransform<TParametersValueType, NDimensions>::FixedParametersType &
CompositeTransform<TParametersValueType, NDimensions>
::GetFixedParameters() const
  {
  TransformQueueType transforms = this->GetTransformsToOptimizeQueue();
  /* Resize destructively. But if it's already this size, nothing is done so
   * it's efficient. */
  this->m_FixedParameters.SetSize( this->GetNumberOfFixedParameters() );

  NumberOfParametersType offset = NumericTraits< NumberOfParametersType >::ZeroValue();
  typename TransformQueueType::const_iterator it;

  it = transforms.end();

  do
    {
    it--;
    const FixedParametersType & subFixedParameters = (*it)->GetFixedParameters();
    /* use vnl_vector data_block() to get data ptr */
    std::copy(subFixedParameters.data_block(),
              subFixedParameters.data_block()+subFixedParameters.Size(),
              &(this->m_FixedParameters.data_block() )[offset]);
    offset += subFixedParameters.Size();
    }
  while( it != transforms.begin() );

  return this->m_FixedParameters;
  }

template<typename TParametersValueType, unsigned int NDimensions>
void
CompositeTransform<TParametersValueType, NDimensions>
::SetFixedParameters(const FixedParametersType & inputParameters)
{
  /* Assumes input params are concatenation of the parameters of the
   * sub transforms currently selected for optimization. */
  TransformQueueType transforms = this->GetTransformsToOptimizeQueue();

  NumberOfParametersType offset = NumericTraits< NumberOfParametersType >::ZeroValue();


  /* Verify proper input size. */
  if( inputParameters.Size() != this->GetNumberOfFixedParameters() )
    {
    itkExceptionMacro(<< "Input parameter list size is not expected size. "
                      << inputParameters.Size() << " instead of "
                      << this->GetNumberOfFixedParameters() << ".");
    }
  this->m_FixedParameters = inputParameters;

  typename TransformQueueType::const_iterator it = transforms.end();

  do
    {
    it--;
    const size_t fixedParameterSize=(*it)->GetFixedParameters().Size();
    (*it)->CopyInFixedParameters(&(this->m_FixedParameters.data_block() )[offset],
              &(this->m_FixedParameters.data_block() )[offset]+fixedParameterSize);
    offset += fixedParameterSize;
    }
  while( it != transforms.begin() );
}


template<typename TParametersValueType, unsigned int NDimensions>
typename CompositeTransform<TParametersValueType, NDimensions>::NumberOfParametersType
CompositeTransform<TParametersValueType, NDimensions>
::GetNumberOfParameters(void) const
{
  /* Returns to total number of params in all transforms currently
   * set to be used for optimized.
   * NOTE: We might want to optimize this only to store the result and
   * only re-calc when the composite object has been modified.
   * However, it seems that number of parameter might change for dense
   * field transfroms (deformation, bspline) during processing and
   * we wouldn't know that in this class, so this is safest. */
  NumberOfParametersType result = NumericTraits< NumberOfParametersType >::ZeroValue();


  for( signed long tind = (signed long) this->GetNumberOfTransforms() - 1; tind >= 0; tind-- )
    {
    if( this->GetNthTransformToOptimize( tind ) )
      {
      const TransformType * transform = this->GetNthTransformConstPointer( tind );
      result += transform->GetNumberOfParameters();
      }
    }
  return result;
}


template<typename TParametersValueType, unsigned int NDimensions>
typename CompositeTransform<TParametersValueType, NDimensions>::NumberOfParametersType
CompositeTransform<TParametersValueType, NDimensions>
::GetNumberOfLocalParameters() const
{
  if ( this->GetMTime() == this->m_LocalParametersUpdateTime )
   {
   return this->m_NumberOfLocalParameters;
   }

  this->m_LocalParametersUpdateTime = this->GetMTime();

  /* Returns to total number of *local* params in all transforms currently
   * set to be used for optimized.
   * Note that unlike in GetNumberOfParameters(), we don't expect the
   * number of local parameters to possibly change. */
  NumberOfParametersType result = NumericTraits< NumberOfParametersType >::ZeroValue();

  for( signed long tind = (signed long) this->GetNumberOfTransforms() - 1; tind >= 0; tind-- )
    {
    if( this->GetNthTransformToOptimize( tind ) )
      {
      const TransformType * transform = this->GetNthTransformConstPointer( tind );
      result += transform->GetNumberOfLocalParameters();
      }
    }
  this->m_NumberOfLocalParameters = result;
  return result;
}


template<typename TParametersValueType, unsigned int NDimensions>
typename CompositeTransform<TParametersValueType, NDimensions>::NumberOfParametersType
CompositeTransform<TParametersValueType, NDimensions>
::GetNumberOfFixedParameters() const
{
  /* Returns to total number of params in all transforms currently
   * set to be used for optimized.
   * NOTE: We might want to optimize this only to store the result and
   * only re-calc when the composite object has been modified. */
  NumberOfParametersType result = NumericTraits< NumberOfParametersType >::ZeroValue();

  for( signed long tind = (signed long) this->GetNumberOfTransforms() - 1;
       tind >= 0; tind-- )
    {
    if( this->GetNthTransformToOptimize( tind ) )
      {
      const TransformType * transform = this->GetNthTransformConstPointer( tind );
      result += transform->GetFixedParameters().Size();
      }
    }
  return result;
}


template<typename TParametersValueType, unsigned int NDimensions>
void
CompositeTransform<TParametersValueType, NDimensions>
::UpdateTransformParameters( const DerivativeType & update, ScalarType  factor )
{
  /* Update parameters within the sub-transforms set to be optimized. */
  /* NOTE: We might want to thread this over each sub-transform, if we
   * find we're working with longer lists of sub-transforms that do
   * not implement any threading of their own for UpdateTransformParameters.
   * Since the plan is for a UpdateTransformParameters functor that is
   * user-assignable, we would need a method in the
   * functor to return whether or not it does therading. If all sub-transforms
   * return that they don't thread, we could do each sub-transform in its
   * own thread from here. */
  NumberOfParametersType numberOfParameters = this->GetNumberOfParameters();

  if( update.Size() != numberOfParameters )
    {
    itkExceptionMacro("Parameter update size, " << update.Size() << ", must "
                      " be same as transform parameter size, " << numberOfParameters << std::endl);
    }

  NumberOfParametersType offset = NumericTraits< NumberOfParametersType >::ZeroValue();


  for( signed long tind = (signed long) this->GetNumberOfTransforms() - 1;
       tind >= 0; tind-- )
    {
    if( this->GetNthTransformToOptimize( tind ) )
      {
      TransformType * subtransform = this->GetNthTransformModifiablePointer( tind );
      /* The input values are in a monolithic block, so we have to point
       * to the subregion corresponding to the individual subtransform.
       * This simply creates an Array object with data pointer, no
       * memory is allocated or copied.
       * NOTE: the use of const_cast is used to avoid a deep copy in the underlying vnl_vector
       * by using LetArrayManageMemory=false, and being very careful here we can
       * ensure that casting away consteness does not result in memory corruption. */
      typename DerivativeType::ValueType * nonConstDataRefForPerformance =
        const_cast< typename DerivativeType::ValueType * >( &( (update.data_block() )[offset]) );
      const DerivativeType subUpdate( nonConstDataRefForPerformance,
                                subtransform->GetNumberOfParameters(), false );
      /* This call will also call SetParameters, so don't need to call it
       * expliclity here. */
      subtransform->UpdateTransformParameters( subUpdate, factor );
      offset += subtransform->GetNumberOfParameters();
      }
    }
  this->Modified();
}


template<typename TParametersValueType, unsigned int NDimensions>
typename CompositeTransform<TParametersValueType, NDimensions>::TransformQueueType &
CompositeTransform<TParametersValueType, NDimensions>
::GetTransformsToOptimizeQueue() const
{
  /* Update the list of transforms to use for optimization only if
   the selection of transforms to optimize may have changed */
  if( this->GetMTime() > this->m_PreviousTransformsToOptimizeUpdateTime )
    {
    this->m_TransformsToOptimizeQueue.clear();
    for( size_t n = 0; n < this->m_TransformQueue.size(); n++ )
      {
      /* Return them in the same order as they're found in the main list */
      if( this->GetNthTransformToOptimize( n ) )
        {
        this->m_TransformsToOptimizeQueue.push_back( this->GetNthTransformModifiablePointer(n) );
        }
      }
    this->m_PreviousTransformsToOptimizeUpdateTime = this->GetMTime();
    }
  return this->m_TransformsToOptimizeQueue;
}


template<typename TParametersValueType, unsigned int NDimensions>
void
CompositeTransform<TParametersValueType, NDimensions>
::FlattenTransformQueue()
{
  TransformQueueType             transformQueue;
  TransformQueueType             transformsToOptimizeQueue;
  TransformsToOptimizeFlagsType  transformsToOptimizeFlags;

  for( SizeValueType m = 0; m < this->GetNumberOfTransforms(); m++ )
    {
    Self * nestedCompositeTransform = dynamic_cast<Self *>( this->m_TransformQueue[m].GetPointer() );
    if( nestedCompositeTransform )
      {
      nestedCompositeTransform->FlattenTransformQueue();
      for( SizeValueType n = 0; n < nestedCompositeTransform->GetNumberOfTransforms(); n++ )
        {
        transformQueue.push_back( nestedCompositeTransform->GetNthTransformModifiablePointer( n ) );
        if( nestedCompositeTransform->GetNthTransformToOptimize( n ) )
          {
          transformsToOptimizeFlags.push_back( true );
          transformsToOptimizeQueue.push_back( nestedCompositeTransform->GetNthTransformModifiablePointer( n ) );
          }
        else
          {
          transformsToOptimizeFlags.push_back( false );
          }
        }
      }
    else
      {
      transformQueue.push_back( this->m_TransformQueue[m] );
      if( this->m_TransformsToOptimizeFlags[m] )
        {
        transformsToOptimizeFlags.push_back( true );
        transformsToOptimizeQueue.push_back( this->m_TransformQueue[m] );
        }
      else
        {
        transformsToOptimizeFlags.push_back( false );
        }
      }
    }

  this->m_TransformQueue = transformQueue;
  this->m_TransformsToOptimizeQueue = transformsToOptimizeQueue;
  this->m_TransformsToOptimizeFlags = transformsToOptimizeFlags;
}


template<typename TParametersValueType, unsigned int NDimensions>
void
CompositeTransform<TParametersValueType, NDimensions>
::PrintSelf( std::ostream& os, Indent indent ) const
{
  Superclass::PrintSelf( os, indent );

  if( this->GetNumberOfTransforms() == 0 )
    {
    return;
    }

  os << indent << "TransformsToOptimizeFlags, begin() to end(): " << std::endl << indent << indent;
  for(  TransformsToOptimizeFlagsType::iterator
        it = this->m_TransformsToOptimizeFlags.begin();
        it != this->m_TransformsToOptimizeFlags.end(); it++ )
    {
    os << *it << " ";
    }
  os << std::endl;

  os << indent <<  "TransformsToOptimize in queue, from begin to end:" << std::endl;
  typename TransformQueueType::const_iterator cit;
  for( cit = this->m_TransformsToOptimizeQueue.begin();
       cit != this->m_TransformsToOptimizeQueue.end(); ++cit )
    {
    os << indent << ">>>>>>>>>" << std::endl;
    (*cit)->Print( os, indent );
    }
  os << indent <<  "End of TransformsToOptimizeQueue." << std::endl << "<<<<<<<<<<" << std::endl;

  os << indent <<  "End of CompositeTransform." << std::endl << "<<<<<<<<<<" << std::endl;
}


template<typename TParametersValueType, unsigned int NDimensions>
typename LightObject::Pointer
CompositeTransform<TParametersValueType, NDimensions>
::InternalClone() const
{
  // This class doesn't use its superclass implemenation
  // TODO: is it really the right behavior?
  // LightObject::Pointer loPtr = Superclass::InternalClone();

  LightObject::Pointer loPtr = CreateAnother();
  typename Self::Pointer clone =
    dynamic_cast<Self *>(loPtr.GetPointer());
  if(clone.IsNull())
    {
    itkExceptionMacro(<< "downcast to type " << this->GetNameOfClass() << " failed.");
    }

  typename TransformQueueType::iterator tqIt =
    this->m_TransformQueue.begin();

  typename TransformsToOptimizeFlagsType::iterator tfIt =
    this->m_TransformsToOptimizeFlags.begin();

  for(int i = 0; tqIt != this->m_TransformQueue.end() &&
        tfIt != this->m_TransformsToOptimizeFlags.end();
      ++tqIt, ++tfIt, ++i)
    {
    clone->AddTransform((*tqIt)->Clone().GetPointer());
    clone->SetNthTransformToOptimize(i,(*tfIt));
    }
  return loPtr;
}

} // end namespace itk

#endif