This file is indexed.

/usr/include/ITK-4.9/itkExpectationMaximizationMixtureModelEstimator.hxx is in libinsighttoolkit4-dev 4.9.0-4ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkExpectationMaximizationMixtureModelEstimator_hxx
#define itkExpectationMaximizationMixtureModelEstimator_hxx

#include "itkExpectationMaximizationMixtureModelEstimator.h"
#include "itkNumericTraits.h"
#include "itkMath.h"

namespace itk
{
namespace Statistics
{
template< typename TSample >
ExpectationMaximizationMixtureModelEstimator< TSample >
::ExpectationMaximizationMixtureModelEstimator() :
  m_Sample(ITK_NULLPTR),
  m_MaxIteration(100),
  m_CurrentIteration(0),
  m_TerminationCode(NOT_CONVERGED),
  m_MembershipFunctionsObject           (MembershipFunctionVectorObjectType::New()),
  m_MembershipFunctionsWeightArrayObject(MembershipFunctionsWeightsArrayObjectType::New())
{
}

template< typename TSample >
void
ExpectationMaximizationMixtureModelEstimator< TSample >
::PrintSelf(std::ostream & os, Indent indent) const
{
  Superclass::PrintSelf(os, indent);
  os << indent << "Maximum Iteration: "
     << this->GetMaximumIteration() << std::endl;
  os << indent << "Sample: "
     << this->GetSample() << std::endl;
  os << indent << "Number Of Components: "
     << this->GetNumberOfComponents() << std::endl;
  for ( unsigned int i = 0; i < this->GetNumberOfComponents(); i++ )
    {
    os << indent << "Component Membership Function[" << i << "]: "
       << this->GetComponentMembershipFunction(i) << std::endl;
    }
  os << indent << "Termination Code: "
     << this->GetTerminationCode() << std::endl;
  os << indent << "Initial Proportions: "
     << this->GetInitialProportions() << std::endl;
  os << indent << "Proportions: "
     << this->GetProportions() << std::endl;
  os << indent << "Calculated Expectation: " << this->CalculateExpectation() << std::endl;
}

template< typename TSample >
void
ExpectationMaximizationMixtureModelEstimator< TSample >
::SetMaximumIteration(int numberOfIterations)
{
  m_MaxIteration = numberOfIterations;
}

template< typename TSample >
int
ExpectationMaximizationMixtureModelEstimator< TSample >
::GetMaximumIteration() const
{
  return m_MaxIteration;
}

template< typename TSample >
void
ExpectationMaximizationMixtureModelEstimator< TSample >
::SetInitialProportions(ProportionVectorType & proportions)
{
  m_InitialProportions = proportions;
}

template< typename TSample >
const typename ExpectationMaximizationMixtureModelEstimator< TSample >::ProportionVectorType &
ExpectationMaximizationMixtureModelEstimator< TSample >
::GetInitialProportions() const
{
  return m_InitialProportions;
}

template< typename TSample >
const typename ExpectationMaximizationMixtureModelEstimator< TSample >::ProportionVectorType &
ExpectationMaximizationMixtureModelEstimator< TSample >
::GetProportions() const
{
  return m_Proportions;
}

template< typename TSample >
void
ExpectationMaximizationMixtureModelEstimator< TSample >
::SetSample(const TSample *sample)
{
  m_Sample = sample;
}

template< typename TSample >
const TSample *
ExpectationMaximizationMixtureModelEstimator< TSample >
::GetSample() const
{
  return m_Sample;
}

template< typename TSample >
int
ExpectationMaximizationMixtureModelEstimator< TSample >
::AddComponent(ComponentType *component)
{
  m_ComponentVector.push_back(component);
  return static_cast< int >( m_ComponentVector.size() );
}

template< typename TSample >
unsigned int
ExpectationMaximizationMixtureModelEstimator< TSample >
::GetNumberOfComponents() const
{
  return m_ComponentVector.size();
}

template< typename TSample >
typename ExpectationMaximizationMixtureModelEstimator< TSample >::TERMINATION_CODE
ExpectationMaximizationMixtureModelEstimator< TSample >
::GetTerminationCode() const
{
  return m_TerminationCode;
}

template< typename TSample >
typename ExpectationMaximizationMixtureModelEstimator< TSample >::ComponentMembershipFunctionType *
ExpectationMaximizationMixtureModelEstimator< TSample >
::GetComponentMembershipFunction(int componentIndex) const
{
  return ( m_ComponentVector[componentIndex] )->GetMembershipFunction();
}

template< typename TSample >
bool
ExpectationMaximizationMixtureModelEstimator< TSample >
::CalculateDensities()
{
  bool componentModified = false;

  for ( size_t i = 0; i < m_ComponentVector.size(); i++ )
    {
    if ( ( m_ComponentVector[i] )->AreParametersModified() )
      {
      componentModified = true;
      break;
      }
    }

  if ( !componentModified )
    {
    return false;
    }

  double                temp;
  size_t                numberOfComponents = m_ComponentVector.size();
  std::vector< double > tempWeights(numberOfComponents, 0. );

  typename TSample::ConstIterator iter = m_Sample->Begin();
  typename TSample::ConstIterator last = m_Sample->End();

  size_t componentIndex;

  typedef typename TSample::AbsoluteFrequencyType FrequencyType;
  FrequencyType frequency;
  FrequencyType zeroFrequency = NumericTraits< FrequencyType >::ZeroValue();
  typename TSample::MeasurementVectorType mvector;
  double density;
  double densitySum;
  double minDouble = NumericTraits<double>::epsilon();

  SizeValueType measurementVectorIndex = 0;

  while ( iter != last )
    {
    mvector = iter.GetMeasurementVector();
    frequency = iter.GetFrequency();
    densitySum = 0.0;
    if ( frequency > zeroFrequency )
      {
      for ( componentIndex = 0; componentIndex < numberOfComponents;
            ++componentIndex )
        {
        double t_prop = m_Proportions[componentIndex];
        double t_value = m_ComponentVector[componentIndex]->Evaluate(mvector);
        density = t_prop * t_value;
        tempWeights[componentIndex] = density;
        densitySum += density;
        }

      for ( componentIndex = 0; componentIndex < numberOfComponents;
            ++componentIndex )
        {
        temp = tempWeights[componentIndex];

        // just to make sure temp does not blow up!
        if ( densitySum > NumericTraits<double>::epsilon() )
          {
          temp /= densitySum;
          }
        m_ComponentVector[componentIndex]->SetWeight(measurementVectorIndex,
                                                     temp);
        }
      }
    else
      {
      for ( componentIndex = 0; componentIndex < numberOfComponents;
            ++componentIndex )
        {
        m_ComponentVector[componentIndex]->SetWeight(measurementVectorIndex,
                                                     minDouble);
        }
      }

    ++iter;
    ++measurementVectorIndex;
    }

  return true;
}

template< typename TSample >
double
ExpectationMaximizationMixtureModelEstimator< TSample >
::CalculateExpectation() const
{
  double sum = 0.0;

  if ( m_Sample )
    {
    unsigned int  measurementVectorIndex;
    SizeValueType size = m_Sample->Size();
    double        logProportion;
    double        temp;
    for ( size_t componentIndex = 0;
          componentIndex < m_ComponentVector.size();
          ++componentIndex )
      {
      temp = m_Proportions[componentIndex];

      // if temp is below the smallest positive double number
      // the log may blow up
      if( temp > NumericTraits<double>::epsilon() )
        {
        logProportion = std::log( temp );
        }
      else
        {
        logProportion = NumericTraits< double >::NonpositiveMin();
        }
      for ( measurementVectorIndex = 0; measurementVectorIndex < size;
            measurementVectorIndex++ )
        {
        temp = m_ComponentVector[componentIndex]->
               GetWeight(measurementVectorIndex);
        if( temp > NumericTraits<double>::epsilon() )
          {
          sum += temp * ( logProportion + std::log( temp ) );
          }
        else
          {
          // let's throw an exception
          itkExceptionMacro( << "temp is null" );
          }
        //m_ComponentVector[componentIndex]->GetWeight(measurementVectorIndex) ) );
        }
      }
    }
  return sum;
}

template< typename TSample >
bool
ExpectationMaximizationMixtureModelEstimator< TSample >
::UpdateComponentParameters()
{
  bool           updated = false;
  ComponentType *component;

  for ( size_t componentIndex = 0; componentIndex < m_ComponentVector.size();
        ++componentIndex )
    {
    component = m_ComponentVector[componentIndex];
    component->Update();
    if ( component->AreParametersModified() )
      {
      updated = true;
      }
    }

  return updated;
}

template< typename TSample >
bool
ExpectationMaximizationMixtureModelEstimator< TSample >
::UpdateProportions()
{
  size_t numberOfComponents = m_ComponentVector.size();
  size_t sampleSize = m_Sample->Size();
  double totalFrequency = static_cast< double >( m_Sample->GetTotalFrequency() );
  size_t   i, j;
  double tempSum;
  bool   updated = false;

  for ( i = 0; i < numberOfComponents; ++i )
    {
    tempSum = 0.;

    if( totalFrequency > NumericTraits<double>::epsilon() )
      {
      for ( j = 0; j < sampleSize; ++j )
        {
        tempSum += ( m_ComponentVector[i]->GetWeight(j)
                     * m_Sample->GetFrequency(j) );
        }

      tempSum /= totalFrequency;
      }

    if ( Math::NotAlmostEquals( tempSum, m_Proportions[i] ) )
      {
      m_Proportions[i] = tempSum;
      updated = true;
      }
    }

  return updated;
}

template< typename TSample >
void
ExpectationMaximizationMixtureModelEstimator< TSample >
::GenerateData()
{
  m_Proportions = m_InitialProportions;

  int iteration = 0;
  m_CurrentIteration = 0;
  while ( iteration < m_MaxIteration )
    {
    m_CurrentIteration = iteration;
    if ( this->CalculateDensities() )
      {
      this->UpdateComponentParameters();
      this->UpdateProportions();
      }
    else
      {
      m_TerminationCode = CONVERGED;
      break;
      }
    ++iteration;
    }

  m_TerminationCode = NOT_CONVERGED;
}

template< typename TSample >
const typename ExpectationMaximizationMixtureModelEstimator< TSample >::MembershipFunctionVectorObjectType *
ExpectationMaximizationMixtureModelEstimator< TSample >
::GetOutput() const
{
  size_t                   numberOfComponents = m_ComponentVector.size();
  MembershipFunctionVectorType & membershipFunctionsVector = m_MembershipFunctionsObject->Get();

  typename SampleType::MeasurementVectorSizeType measurementVectorSize =
    m_Sample->GetMeasurementVectorSize();

  typename GaussianMembershipFunctionType::MeanVectorType mean;
  NumericTraits<typename GaussianMembershipFunctionType::MeanVectorType>::SetLength(mean,
    measurementVectorSize);

  typename GaussianMembershipFunctionType::CovarianceMatrixType covariance;
  covariance.SetSize(measurementVectorSize, measurementVectorSize);

  typename ComponentType::ParametersType parameters;

  for ( size_t i = 0; i < numberOfComponents; ++i )
    {
    parameters = m_ComponentVector[i]->GetFullParameters();
    typename GaussianMembershipFunctionType::Pointer membershipFunction =
      GaussianMembershipFunctionType::New();
    membershipFunction->SetMeasurementVectorSize(measurementVectorSize);
    unsigned int parameterIndex = 0;
    for ( unsigned int j = 0; j < measurementVectorSize; j++ )
      {
      mean[j] = parameters[j];
      ++parameterIndex;
      }

    for ( unsigned int ii = 0; ii < measurementVectorSize; ++ii )
      {
      for ( unsigned int jj = 0; jj < measurementVectorSize; ++jj )
        {
        covariance.GetVnlMatrix().put(ii, jj, parameters[parameterIndex]);
        ++parameterIndex;
        }
      }

    membershipFunction->SetMean(mean);
    membershipFunction->SetCovariance(covariance);
    membershipFunctionsVector.push_back( membershipFunction.GetPointer() );
    }

  return static_cast< const MembershipFunctionVectorObjectType * >( m_MembershipFunctionsObject );
}

template< typename TSample >
const typename ExpectationMaximizationMixtureModelEstimator< TSample
                                                             >::MembershipFunctionsWeightsArrayObjectType *
ExpectationMaximizationMixtureModelEstimator< TSample >
::GetMembershipFunctionsWeightsArray() const
{
  size_t           numberOfComponents = m_ComponentVector.size();
  ProportionVectorType & membershipFunctionsWeightVector =
    m_MembershipFunctionsWeightArrayObject->Get();

  membershipFunctionsWeightVector.SetSize(numberOfComponents);
  for ( size_t i = 0; i < numberOfComponents; ++i )
    {
    membershipFunctionsWeightVector[i] = m_Proportions[i];
    }

  return static_cast< const MembershipFunctionsWeightsArrayObjectType * >( m_MembershipFunctionsWeightArrayObject );
}

template< typename TSample >
void
ExpectationMaximizationMixtureModelEstimator< TSample >
::Update()
{
  this->GenerateData();
}
} // end of namespace Statistics
} // end of namespace itk

#endif