This file is indexed.

/usr/include/ITK-4.9/itkFEMElementBase.h is in libinsighttoolkit4-dev 4.9.0-4ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#ifndef itkFEMElementBase_h
#define itkFEMElementBase_h

#include "itkFEMLightObject.h"
#include "itkFEMPArray.h"
#include "itkFEMMaterialBase.h"
#include "itkFEMSolution.h"
#include "itkVectorContainer.h"
#include "vnl/vnl_matrix.h"
#include "vnl/vnl_vector.h"
#include "ITKFEMExport.h"

#include <set>
#include <vector>

namespace itk
{
namespace fem
{
/**
 * \class Element
 * \brief Abstract base element class.
 *
 * Derive this class to create new finite element classes.
 * The storage of element parameters (geometry...) can't be implemented here, since we don't know yet,
 * how much memory each element needs. Instead each derived class should take care of the memory
 * management (declare appropriate data members) for the element parameters and provide access
 * to these parameters (like nodes, materials...).
 *
 * Derived classes must define the following class methods:
 *   GetIntegrationPointAndWeight
 *   GetNumberOfIntegrationPoints
 *   ShapeFunctions
 *   ShapeFunctionDerivatives
 *   GetLocalFromGlobalCoordinates
 *   JacobianDeterminant
 *   JacobianInverse
 *   PopulateEdgeIds
 *
 * These are required for the loads to be properly applied properly to the
 * element.
 *
 * \sa Element2DC0LinearLine
 * \sa Element2DC0LinearQuadrilateral
 * \sa Element2DC0LinearTriangular
 * \sa Element2DC1Beam
 * \sa Element2DC0QuadraticTriangular
 * \sa Element3DC0LinearHexahedron
 * \sa Element3DC0LinearTetrahedron
 * \sa Element3DC0LinearTriangular
 * \sa Element3DC0LinearTriangularLaplaceBeltrami
 * \ingroup ITKFEM
 */

class ITKFEM_EXPORT Element : public FEMLightObject
{
public:
  /** Standard class typedefs. */
  typedef Element                  Self;
  typedef FEMLightObject           Superclass;
  typedef SmartPointer<Self>       Pointer;
  typedef SmartPointer<const Self> ConstPointer;

  /** Run-time type information (and related methods). */
  itkTypeMacro(Element, FEMLightObject);

  /**
   * Floating point type used in all Element classes.
   */
  typedef double        Float;
  typedef unsigned long ElementIdentifier;

  /**
   * Array class that holds special pointers to the Element objects
   */
  // FIXME - Remove FEMPArray Type and replace with VectorContainer version
  typedef FEMPArray<Element>                                   ArrayType;
  typedef VectorContainer<ElementIdentifier, Element::Pointer> ArrayType1;

  /**
   * Class used to store the element stiffness matrix
   */
  typedef vnl_matrix<Float> MatrixType;

  /**
   * Class to store the element load vector
   */
  typedef vnl_vector<Float> VectorType;

  /**
   * Easy and consistent access to LoadElement and LoadElement::Pointer type.
   * This is a pointer to FEMLightObject to avoid cyclic references between
   * LoadElement and Element classes.
   * As a consequence whenever you need to use a pointer to LoadElement class
   * within the element's declaration or definition, ALWAYS use this typedef
   * instead.
   * When calling the GetLoadVector(...) function from outside, you should
   * ALWAYS first convert the argument to Element::LoadPointer. See
   * code of function Solver::AssembleF(...) for more info.
   */
  typedef FEMLightObject    LoadType;
  typedef LoadType::Pointer LoadPointer;

  /**
   * Type that stores global ID's of degrees of freedom.
   */

  typedef unsigned int DegreeOfFreedomIDType;

  /**
   * Constant that represents an invalid DegreeOfFreedomID object.
   * If a degree of freedom is assigned this value, this means that
   * that no specific value was (yet) assigned to this DOF.
   */
  enum { InvalidDegreeOfFreedomID = 0xffffffff };


/**
 * \class Node
 * \brief Class that stores information required to define a node.
 *
 * A node can define a point in space and can hold an arbitrary number
 * of coordinates and the DOFs. Since the only classes that use nodes
 * are the elements, the node class is defined within an element base class.
 *
 * \note Possibly move this class to its own file
 * \ingroup ITKFEM
 */
  class ITKFEM_EXPORT Node : public FEMLightObject
  {
  public:
    /** Standard class typedefs. */
    typedef Node                     Self;
    typedef FEMLightObject           Superclass;
    typedef SmartPointer<Self>       Pointer;
    typedef SmartPointer<const Self> ConstPointer;

    /** Method for creation through the object factory. */
    // itkNewMacro(Self);
    static Pointer New(void)
      {
        Pointer smartPtr = ::itk::ObjectFactory<Self>::Create();

        if( smartPtr.IsNull() )
          {
          smartPtr = static_cast<Pointer>(new Self);
          }
        smartPtr->UnRegister();
        return smartPtr;
      }

    /** Run-time type information (and related methods). */
    itkTypeMacro(Node, FEMLightObject);

    /** CreateAnother method will clone the existing instance of this type,
     * including its internal member variables. */
    virtual::itk::LightObject::Pointer CreateAnother(void) const ITK_OVERRIDE;

    /**
     * Floating point precision type.
     */
    typedef double Float;

    /**
     * Array class that holds special pointers to the nodes.
     */
    typedef FEMPArray<Self> ArrayType;

    /**
     * Default constructor
     */
    Node()
      {
      }
    /**
     * Destructor
     */
    ~Node()
      {
        this->ClearDegreesOfFreedom();
        this->m_elements.clear();
      }

    /**
     * Return a reference to a vector that contains coordinates
     * of this node.
     */
    const VectorType & GetCoordinates(void) const
      {
        return m_coordinates;
      }

    /**
     * Set coordinates of a node.
     */
    void SetCoordinates(const VectorType & coords)
      {
        m_coordinates = coords;
      }

    /**
     * Get DOF IDs associated with this node.
     */
    DegreeOfFreedomIDType GetDegreeOfFreedom(unsigned int i) const
      {
        if( i >= m_dof.size() )
          {
          return InvalidDegreeOfFreedomID;
          }
        return m_dof[i];
      }

    /**
     * Set DOF IDs associated with this node.
     */
    void SetDegreeOfFreedom(unsigned int i, DegreeOfFreedomIDType dof) const
      {
        if( i >= m_dof.size() )
          {
          m_dof.resize(i + 1, InvalidDegreeOfFreedomID);
          }
        m_dof[i] = dof;
      }

    virtual void ClearDegreesOfFreedom(void) const;

  public:
    /**
     * List of pointers to elements that use this node. External code is
     * responsible for maintaining the list.
     */
    typedef std::set<Element *> SetOfElements;
    mutable SetOfElements m_elements;
  protected:
    virtual void PrintSelf(std::ostream& os, Indent indent) const ITK_OVERRIDE;
  private:
    /**
     * Vector object that holds node coordinates.
     */
    VectorType m_coordinates;

    /**
     * Array that holds IDs of degrees of freedom that are
     * defined at this node.
     */
    mutable std::vector<DegreeOfFreedomIDType> m_dof;
  };  // end class Node

// ////////////////////////////////////////////////////////////////////////
/*
 * Methods related to the physics of the problem.
 */

  virtual VectorType GetStrainsAtPoint(const VectorType & pt, const Solution & sol, unsigned int index) const;

  virtual VectorType GetStressesAtPoint(const VectorType & pt, const VectorType & e, const Solution & sol,
                                        unsigned int index) const;

  /**
   * Compute and return element stiffnes matrix (Ke) in global coordinate
   * system.
   * The base class provides a general implementation which only computes
   *
   *     b   T
   * int    B(x) D B(x) dx
   *     a
   *
   * using the Gaussian numeric integration method. The function calls
   * GetIntegrationPointAndWeight() / GetNumberOfIntegrationPoints() to obtain
   * the integration points. It also calls the GetStrainDisplacementMatrix()
   * and GetMaterialMatrix() member functions.
   *
   * \param Ke Reference to the resulting stiffnes matrix.
   *
   * \note This is a very generic implementation of the stiffness matrix
   *       that is suitable for any problem/element definition. A specifc
   *       element may override this implementation with its own simple one.
   */
  virtual void GetStiffnessMatrix(MatrixType & Ke) const;

  /**
   * Compute the physical energy, U, of the deformation (e.g. stress / strain ).
   *
   *      T
   * U = u  Ke u
   *
   * The matrix LocalSolution contains the solution to use in the energy
   * computation.  Usually, this is the solution at the nodes.
   */
  virtual Float GetElementDeformationEnergy(MatrixType & LocalSolution) const;

  /**
   * Compute and return element mass matrix (Me) in global coordinate system.
   *
   *     b   T
   * int    N(x) (rho c) N(x) dx
   *     a
   *
   * where (rho c) is constant (element density), which is here assumed to be
   * equal to one. If this is not the case, this function must be overriden in
   * a derived class. Implementation is similar to GetStiffnessMatrix.
   */
  virtual void GetMassMatrix(MatrixType & Me) const;

  /**
   * Compute and return landmark contribution to element stiffness
   * matrix (Le) in global coordinate system.
   *
   *     b             T
   * int   (1/eta)^2  N(x) N(x) dx
   *     a
   *
   * where (eta ) is the landmark weight.  Implementation is similar
   * to GetMassMatrix.
   */
  virtual void GetLandmarkContributionMatrix(float eta, MatrixType & Le) const;

  /**
   * Compute the strain displacement matrix at local point.
   *
   * \param B Reference to a matrix object that will contain the result
   * \param shapeDgl Matrix that contains derivatives of shape functions
   *                 w.r.t. global coordinates.
   */
  virtual void GetStrainDisplacementMatrix(MatrixType & B, const MatrixType & shapeDgl) const = 0;

  /**
   * Compute the element material matrix.
   *
   * \param D Reference to a matrix object
   */
  virtual void GetMaterialMatrix(MatrixType & D) const = 0;

  /**
   * Return interpolated value of all unknown functions at
   * given local point.
   *
   * \param pt Point in local element coordinates.
   * \param sol Reference to the master solution object. This object
   *            is created by the Solver object when the whole FEM problem
   *            is solved and contains the values of unknown functions
   *            at nodes (degrees of freedom).
   * \param solutionIndex We allow more than one solution vector to be stored - this selects which to use in interpolation.
   */
  virtual VectorType InterpolateSolution(const VectorType & pt,
                                         const Solution & sol,
                                         unsigned int solutionIndex = 0) const;

  /**
   * Return interpolated value of f-th unknown function at
   * given local point.
   *
   * \param pt Point in local element coordinates.
   * \param sol Reference to the master solution object. This object
   *            is created by the Solver object when the whole FEM problem
   *            is solved and contains the values of unknown functions
   *            at nodes (degrees of freedom).
   * \param f Number of unknown function to interpolate.
   *          Must be 0 <= f < GetNumberOfDegreesOfFreedomPerNode().
   * \param solutionIndex We allow more than one solution vector to be stored - this selects which to use in interpolation.
   */
  virtual Float InterpolateSolutionN(const VectorType & pt, const Solution & sol, unsigned int f,
                                     unsigned int solutionIndex = 0) const;

  /**
   * Convenient way to access IDs of degrees of freedom
   * that are stored in node objects.
   *
   * \param local_dof Local number of degree of freedom within an element.
   */
  DegreeOfFreedomIDType GetDegreeOfFreedom(unsigned int local_dof) const
    {
      if( local_dof > this->GetNumberOfDegreesOfFreedom() )
        {
        return InvalidDegreeOfFreedomID;
        }
      return this->GetNode(local_dof /
                           this->GetNumberOfDegreesOfFreedomPerNode() )
        ->GetDegreeOfFreedom(local_dof % this->GetNumberOfDegreesOfFreedomPerNode() );
    }

  /**
   * Return the pointer to the Material object used by the element.
   * All derived classes, which use objects of Material class should
   * override this method to provide access to the material from the
   * base class.
   *
   * \note Derived Element classes don't have to use a material
   * class, but since the majority of the final Element classes
   * uses Material classes to specify phhysical constants that the
   * element depends on, we provide this virtual function that
   * enables easy access to this pointer from the base class. If the
   * derived class does not override this function, the returned pointer
   * is 0 by default, signaling that there is no Material object.
   *
   * \sa SetMaterial
   */
  virtual Material::ConstPointer GetMaterial(void) const;

  /**
   * Set the pointer to the Material object used by the element.
   * All derived classes, which use objects of Material class should
   * override this method to provide access to the material from the
   * base class.
   *
   * \sa GetMaterial
   */
  virtual void SetMaterial(Material::ConstPointer);

  // ////////////////////////////////////////////////////////////////////////
  /**
   * Methods related to numeric integration
   */

  /**
   * Computes the vector representing the i-th integration point in
   * local element coordinates for a Gauss-Legendre numerical integration
   * over the element domain. It also computes the weight at this integration
   * point.
   *
   * Optionally you can also specify the order of integration. If order
   * is not specified, it defaults to 0, which means that the derived element
   * should use the optimal integration order specific for that element.
   *
   * \note This function must be implemented in derived element classes, and
   *       is expected to provide valid integration points for up to
   *       gaussMaxOrder-th order of integration.
   *
   * \param i Integration point number 0<=i<GetNumberOfIntegrationPoints()
   * \param pt Reference to object of class VectorType that will hold the
   *           integration point.
   * \param w Reference to Float variable that will hold the weight.
   * \param order Order of integration.
   *
   * \sa GetNumberOfIntegrationPoints()
   */
  virtual void GetIntegrationPointAndWeight(unsigned int i,
                                            VectorType & pt,
                                            Float & w,
                                            unsigned int order = 0) const = 0;

  /**
   * Returns total number of integration points, for given order
   * of Gauss-Legendre numerical integration rule.
   *
   * \note This function must be implemented in derived element classes, and
   *       is expected to provide valid number of integration points for up
   *       to gaussMaxOrder-th order of integration.
   *
   * \sa GetIntegrationPointAndWeight()
   */
  virtual unsigned int GetNumberOfIntegrationPoints(unsigned int order = 0) const = 0;

  /**
   * Maximum supported order of 1D Gauss-Legendre integration.
   * Integration points are defined for orders from 1 to gaussMaxOrder.
   * Number of integration points is equal to the order of integration
   * rule.
   *
   * \sa gaussPoint
   */
  itkStaticConstMacro(gaussMaxOrder, unsigned int, 10);

  /**
   * Points for 1D Gauss-Legendre integration from -1 to 1. First
   * index is order of integration, second index is the number of
   * integration point.
   *
   * Example: gaussPoint[4][2] returns third point of the 4th order
   * integration rule. Subarray gaussPoint[0][...] does not provide useful
   * information. It is there only to keep order index correct.
   *
   * \sa gaussWeight
   */
  static const Float gaussPoint[gaussMaxOrder + 1][gaussMaxOrder];

  /**
   * Weights for Gauss-Legendre integration.
   *
   * \sa gaussPoint
   */
  static const Float gaussWeight[gaussMaxOrder + 1][gaussMaxOrder];

// ////////////////////////////////////////////////////////////////////////
/*
 * Methods related to the geometry of an element
 */

  /**
   * Type that is used to store IDs of a node. It is a
   * pointer to Node objects.
   */
  typedef Node::ConstPointer NodeIDType;

  /**
   * Return the total number of nodes in an elememnt.
   */
  virtual unsigned int GetNumberOfNodes(void) const = 0;

  /**
   * Returns the ID (pointer) of n-th node in an element.
   */
  virtual NodeIDType GetNode(unsigned int n) const = 0;

  /**
   * Sets the pointe of n-th node in an element to node.
   */
  virtual void SetNode(unsigned int n, NodeIDType node) = 0;
  virtual void SetNode(unsigned int n, Node::Pointer node);
  /**
   * Return a vector of global coordinates of n-th node in an element.
   *
   * \param n Local number of node. Must be 0 <= n < this->GetNumberOfNodes().
   */
  virtual const VectorType & GetNodeCoordinates(unsigned int n) const = 0;

  /**
   * Transforms the given local element coordinates into global.
   *
   * \param pt Point in local element coordinates.
   */
  virtual VectorType GetGlobalFromLocalCoordinates(const VectorType & pt) const;

  /**
   * Transforms the given global element coordinates into local.  Returns false if the point is outside.
   *
   * \param globalPt Reference to vector containing a point in global (world) coordinates.
   * \param localPt Reference to the vector that will store the local coordinate.
   */
  virtual bool GetLocalFromGlobalCoordinates(const VectorType & globalPt, VectorType & localPt) const = 0;

  /**
   * Returns the number of dimensions of space in which the element is
   * defined. e.g. 2 for 2D elements, 3 for 3D... This is also equal
   * to the size vector containing nodal coordinates.
   */
  virtual unsigned int GetNumberOfSpatialDimensions() const = 0;

  /**
   * Returns a vector containing the values of all shape functions
   * that define the geometry of a finite element at a given local point
   * within an element.
   *
   * \param pt Point in local element coordinates.
   */
  virtual VectorType ShapeFunctions(const VectorType & pt) const = 0;

  /**
   * Compute the matrix of values of the shape functions derivatives with
   * respect to local coordinates of this element at a given point.
   *
   * A column in this matrix corresponds to a specific shape function,
   * while a row corresponds to different local coordinates. E.g.
   * element at row 2, col 3 contains derivative of shape function
   * number 3 with respect to local coordinate number 2.
   *
   * \param pt Point in local element coordinates.
   * \param shapeD Reference to a matrix object, which will be filled
   *               with values of shape function derivatives.
   *
   * \sa ShapeFunctionGlobalDerivatives
   */
  virtual void ShapeFunctionDerivatives(const VectorType & pt, MatrixType & shapeD) const = 0;

  /**
   * Compute matrix of shape function derivatives with respect to
   * global coordinates.
   *
   * A column in this matrix corresponds to a specific shape function,
   * while a row corresponds to different global coordinates.
   *
   * \param pt Point in local element coordinates.
   * \param shapeDgl Reference to a matrix object, which will be filled
   *                 with values of shape function derivatives w.r.t. global
   *                 (world) element coordinates.
   * \param pJ Optional pointer to Jacobian matrix computed at point pt. If this
   *           is set to 0, the Jacobian will be computed as necessary.
   * \param pshapeD A pointer to derivatives of shape functions at point pt.
   *                If this pointer is 0, derivatives will be computed as
   *                necessary.
   *
   * \sa ShapeFunctionDerivatives
   */
  virtual void ShapeFunctionGlobalDerivatives(const VectorType & pt, MatrixType & shapeDgl, const MatrixType *pJ = ITK_NULLPTR,
                                              const MatrixType *pshapeD = ITK_NULLPTR) const;

  /**
   * Compute the Jacobian matrix of the transformation from local
   * to global coordinates at a given local point.
   *
   * A column in this matrix corresponds to a global coordinate,
   * while a row corresponds to different local coordinates. E.g.
   * element at row 2, col 3 contains derivative of the third global
   * coordinate with respect to local coordinate number 2.
   *
   * In order to compute the Jacobian, we normally need the shape
   * function derivatives. If they are known, you should pass a
   * pointer to an object of MatrixType that contains the shape
   * function derivatives. If they are not known, pass null pointer
   * and they will be computed automatically.
   *
   * \param pt Point in local coordinates
   * \param J reference to matrix object, which will contain the jacobian
   * \param pshapeD A pointer to derivatives of shape functions at point pt.
   *                If this pointer is 0, derivatives will be computed as
   *                necessary.
   */
  virtual void Jacobian(const VectorType & pt, MatrixType & J, const MatrixType *pshapeD = ITK_NULLPTR) const;

  /**
   * Compute the determinant of the Jacobian matrix
   * at a given point with respect to the local
   * coordinate system.
   *
   * \param pt Point in local element coordinates.
   * \param pJ Optional pointer to Jacobian matrix computed at point pt. If this
   *           is set to 0, the Jacobian will be computed as necessary.
   */
  virtual Float JacobianDeterminant(const VectorType & pt, const MatrixType *pJ = ITK_NULLPTR) const;

  /**
   * Compute the inverse of the Jacobian matrix
   * at a given point with respect to the local
   * coordinate system.
   *
   * \param pt Point in local element coordinates.
   * \param invJ Reference to the object of MatrixType that will store the
   *             computed inverse if Jacobian.
   * \param pJ Optional pointer to Jacobian matrix computed at point pt. If this
   *           is set to 0, the Jacobian will be computed as necessary.
   */
  virtual void JacobianInverse(const VectorType & pt, MatrixType & invJ, const MatrixType *pJ = ITK_NULLPTR) const;

  /**
   * Return the total number of degrees of freedom defined in a derived
   * element class. By default this is equal to number of points in a cell
   * multiplied by number of degrees of freedom at each point.
   */
  virtual unsigned int GetNumberOfDegreesOfFreedom(void) const;

  /**
   * Access the edge ids vector. The vector in turn contains a list of edge ids.
   */
  virtual std::vector<std::vector<int> > GetEdgeIds(void) const;

  /**
   * Return the number of degrees of freedom at each node. This is also
   * equal to number of unknowns that we want to solve for at each point
   * within an element.
   *
   * \note This function must be overriden in all derived classes.
   */
  virtual unsigned int GetNumberOfDegreesOfFreedomPerNode(void) const = 0;

  /** Set the edge order and the points defining each edge */
  virtual void PopulateEdgeIds(void) = 0;

protected:

  // to store edge connectivity data
  std::vector<std::vector<int> > m_EdgeIds;

  virtual void PrintSelf(std::ostream& os, Indent indent) const ITK_OVERRIDE;

};

}
}  // end namespace itk::fem

#endif // #ifndef itkFEMElementBase_h