/usr/include/ITK-4.9/itkFEMRobustSolver.hxx is in libinsighttoolkit4-dev 4.9.0-4ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 | /*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkFEMRobustSolver_hxx
#define itkFEMRobustSolver_hxx
#include "itkFEMRobustSolver.h"
#include "itkFEMLoadNode.h"
#include "itkFEMLoadElementBase.h"
#include "itkFEMLoadBC.h"
#include "itkFEMLoadBCMFC.h"
#include "itkFEMLoadLandmark.h"
#include "itkMath.h"
namespace itk
{
namespace fem
{
template <unsigned int VDimension>
RobustSolver<VDimension>
::RobustSolver()
{
this->m_ForceIndex = 0;
this->m_LandmarkForceIndex = 1;
this->m_ExternalForceIndex = 2;
this->m_SolutionIndex = 0;
this->m_MeshStiffnessMatrixIndex = 1;
this->m_LandmarkStiffnessMatrixIndex = 2;
this->m_StiffnessMatrixIndex = 0;
this->m_OutlierRejectionSteps = 5;
this->m_ApproximationSteps = 5;
this->m_ToleranceToLargestDisplacement = 1.0;
this->m_ConjugateGradientPrecision = 1e-3;
this->m_FractionErrorRejected =.25;
this->m_TradeOffImageMeshEnergy = 1.0;
this->m_UseInterpolationGrid = true;
}
template <unsigned int VDimension>
RobustSolver<VDimension>
::~RobustSolver()
{
}
template <unsigned int VDimension>
void
RobustSolver<VDimension>
::Initialization()
{
this->SetLinearSystemWrapper(&m_Itpack);
const FEMIndexType maximumNonZeroMatrixEntriesFactor = 100;
const FEMIndexType maxNumberOfNonZeroValues = this->m_NGFN * maximumNonZeroMatrixEntriesFactor;
if( maxNumberOfNonZeroValues > NumericTraits< FEMIndexType >::max() / 2 )
{
itkExceptionMacro("Too large system of equations");
}
this->m_Itpack.SetMaximumNonZeroValuesInMatrix( maxNumberOfNonZeroValues );
// the NGFN is determined once the FEMObject is finalized
this->m_ls->SetSystemOrder(this->m_NGFN);
this->m_ls->SetNumberOfVectors(3);
this->m_ls->SetNumberOfSolutions(1);
this->m_ls->SetNumberOfMatrices(3);
this->m_ls->InitializeMatrix(m_MeshStiffnessMatrixIndex);
this->m_ls->InitializeMatrix(m_LandmarkStiffnessMatrixIndex);
this->m_ls->InitializeMatrix(m_StiffnessMatrixIndex);
this->m_ls->InitializeVector(m_ForceIndex);
this->m_ls->InitializeVector(m_LandmarkForceIndex);
this->m_ls->InitializeVector(m_ExternalForceIndex);
this->m_ls->InitializeSolution(m_SolutionIndex);
this->InitializeInterpolationGrid();
this->InitializeLandmarks();
}
template <unsigned int VDimension>
void
RobustSolver<VDimension>
::InitializeLandmarks()
{
/*
* Record the element, in which the landmark is located, and the shape function
* value.
*/
LoadContainerType *container = this->m_FEMObject->GetModifiableLoadContainer();
if(!container)
{
itkExceptionMacro("Missing container");
}
LoadContainerIterator it = container->Begin();
for(; it != container->End(); ++it)
{
Load::Pointer load = it.Value();
LoadNoisyLandmark *landmark = dynamic_cast<LoadNoisyLandmark*>(load.GetPointer());
itkAssertInDebugAndIgnoreInReleaseMacro(landmark != ITK_NULLPTR);
const VectorType & globalPosition = landmark->GetSource();
InterpolationGridPointType point;
for( unsigned int i = 0; i < this->FEMDimension; i++ )
{
point[i] = globalPosition[i];
}
if(this->m_UseInterpolationGrid)
{
// landmark is within the interpolation grid
InterpolationGridIndexType index;
if( this->m_InterpolationGrid->TransformPhysicalPointToIndex(point, index) )
{
const Element * element = this->m_InterpolationGrid->GetPixel(index);
// landmark is inside the mesh
if(element != ITK_NULLPTR)
{
landmark->SetContainedElement( element );
const FEMIndexType numberOfDimensions = element->GetNumberOfSpatialDimensions();
VectorType localPos(numberOfDimensions);
element->GetLocalFromGlobalCoordinates(globalPosition, localPos);
landmark->SetShape(element->ShapeFunctions(localPos));
landmark->SetIsOutOfMesh(false);
}
else
{
// remove the landmark
landmark->SetIsOutOfMesh(true);
}
}
}
else
{
landmark->AssignToElement(this->m_FEMObject->GetModifiableElementContainer() );
Element::ConstPointer ep = landmark->GetElement(0);
VectorType localPos = landmark->GetPoint();
landmark->SetShape(ep->ShapeFunctions(localPos));
}
}
// remove landmarks outside of the mesh
this->DeleteLandmarksOutOfMesh();
}
template <unsigned int VDimension>
void
RobustSolver<VDimension>
::GenerateData()
{
// initialize matrix, vector, solution, interpolation grid, and landmark.
this->Initialization();
// LS solver, which can be a VNL solver or a PETSc solver
this->RunSolver();
// copy the input to the output and add the
// displacements to update the nodal coordinates
FEMObjectType *femObject = this->GetOutput();
femObject->DeepCopy(this->GetInput());
// create DOF
femObject->FinalizeMesh();
this->UpdateDisplacements();
}
template <unsigned int VDimension>
void
RobustSolver<VDimension>
::RunSolver()
{
// Solve the displacement vector U
this->AssembleMeshStiffnessMatrix();
this->ComputeLandmarkTensor();
this->AssembleLandmarkStiffnessMatrix();
this->AssembleGlobalMatrixFromLandmarksAndMeshMatrices();
this->AssembleF();
if( this->m_OutlierRejectionSteps != 0 )
{
this->IncrementalSolverWithOutlierRejection();
}
else
{
// do "interpolation" only (no points discarded)
this->IncrementalSolverWithoutOutlierRejection();
}
}
template <unsigned int VDimension>
void
RobustSolver<VDimension>
::IncrementalSolverWithOutlierRejection()
{
// Solve the displacement vector U with outlier rejection
const unsigned int numberOfLoads = this->m_FEMObject->GetNumberOfLoads();
const double rejectionRate = this->m_FractionErrorRejected / this->m_OutlierRejectionSteps;
const unsigned int numberOfRejectedLandmarksPerStep =
static_cast<unsigned int>( floor(numberOfLoads * rejectionRate) );
itkDebugMacro("numberOfRejectedLandmarksPerStep " << numberOfRejectedLandmarksPerStep);
for (unsigned int outlierRejectionIteration = 0;
outlierRejectionIteration < m_OutlierRejectionSteps; ++outlierRejectionIteration)
{
// get scaling parameter before outlier rejection
const double oldPointTensorPonderation = this->GetLandmarkTensorPonderation();
this->AddExternalForcesToSetMeshZeroEnergy();
itkDebugMacro("external force added");
// solve linear system of equations
// solver to find possible outliers
this->SolveSystem();
itkDebugMacro("System solved");
// compute simulated error for sorting
this->ComputeLandmarkSimulatedDisplacementAndWeightedError();
// sort the points in the *decreasing* order of error norm
this->NthElementWRTDisplacementError(numberOfRejectedLandmarksPerStep);
// set first n to "unselected", and decrease
// numberOfSelectedBlocks accordingly
this->UnselectLandmarks(numberOfRejectedLandmarksPerStep);
this->RemoveUnselectedLandmarkContributionInPointStiffnessMatrix();
itkDebugMacro("unselected points' contribution removed");
this->DeleteFromLandmarkBeginning(numberOfRejectedLandmarksPerStep);
itkDebugMacro("unselected points removed from the list");
// rescale the point stiffness matrix with the new pointTensorPonderation
this->RescaleLandmarkStiffnessMatrix(oldPointTensorPonderation);
itkDebugMacro("matrix rescaled");
this->AssembleGlobalMatrixFromLandmarksAndMeshMatrices();
itkDebugMacro("matrix reassembled");
this->AssembleF();
itkDebugMacro("vector rebuilt");
this->AddExternalForcesToSetMeshZeroEnergy();
itkDebugMacro("external force added");
// solver when some outliers are rejected
this->SolveSystem();
itkDebugMacro("system resolved");
this->CalculateExternalForces();
itkDebugMacro("approximation iteration with outlier rejection " << outlierRejectionIteration);
}
this->IncrementalSolverWithoutOutlierRejection();
}
template <unsigned int VDimension>
void
RobustSolver<VDimension>
::IncrementalSolverWithoutOutlierRejection()
{
// Solve the displacement vector U without outlier rejection
for(unsigned int approximationStep = 0; approximationStep < this->m_ApproximationSteps; ++approximationStep)
{
this->AddExternalForcesToSetMeshZeroEnergy();
itkDebugMacro("external force added");
this->SolveSystem();
this->CalculateExternalForces();
itkDebugMacro("Approximation step without outlier rejection " << approximationStep);
}
}
template <unsigned int VDimension>
void
RobustSolver<VDimension>
::ComputeLandmarkSimulatedDisplacementAndWeightedError()
{
// Compute the approximation error for each landmark for subsequent outlier
const double lambda = this->m_ToleranceToLargestDisplacement;
LoadContainerType *container = this->m_FEMObject->GetModifiableLoadContainer();
if(!container)
{
itkExceptionMacro("No container");
}
LoadContainerIterator it = container->Begin();
while(it != container->End())
{
Load::Pointer load = it.Value();
LoadNoisyLandmark *landmark = dynamic_cast<LoadNoisyLandmark*>(load.GetPointer());
if(landmark == ITK_NULLPTR)
{
itkExceptionMacro("Encounter landmark that is not a LoadNoisyLandmark");
}
if(!landmark->IsOutlier())
{
const VectorType & shape = landmark->GetShape();
const Element * element = landmark->GetContainedElement();
const FEMIndexType numberOfDOFs = element->GetNumberOfDegreesOfFreedomPerNode();
const FEMIndexType numberOfNodes = element->GetNumberOfNodes();
VectorType error(numberOfDOFs, 0.0);
VectorType nodeSolution(numberOfDOFs);
for(FEMIndexType nodeId = 0; nodeId < numberOfNodes; ++nodeId)
{
for(FEMIndexType dofId = 0; dofId < numberOfDOFs; ++dofId)
{
const int degreeOfFreedom = element->GetDegreeOfFreedom(nodeId * numberOfDOFs + dofId);
nodeSolution[dofId] = this->m_ls->GetSolutionValue(degreeOfFreedom, m_SolutionIndex);
}
error += shape[nodeId] * nodeSolution;
}
landmark->SetSimulatedDisplacement(error);
const double displacementNorm = error.two_norm();
error = landmark->GetRealDisplacement() - error;
const double confidence = landmark->GetConfidence();
const VectorType weightedError = error / ((1-lambda) * displacementNorm + lambda);
if(landmark->HasStructureTensor())
{
MatrixType structureTensor = landmark->GetStructureTensor();
VectorType structureTensorPonderatedError = structureTensor * confidence * weightedError;
landmark->SetErrorNorm(structureTensorPonderatedError.two_norm());
}
else
{
VectorType nonStructureTensorponderatedError = confidence * weightedError;
landmark->SetErrorNorm(nonStructureTensorponderatedError.two_norm());
}
}
++it;
}
}
template <unsigned int VDimension>
void
RobustSolver<VDimension>
::ComputeLandmarkTensor()
{
// Compute landmark tensor weighted by a structure tensor if exists
LoadContainerType *container = this->m_FEMObject->GetModifiableLoadContainer();
if(!container)
{
itkExceptionMacro("Missing container");
}
LoadContainerIterator it = container->Begin();
for(; it != container->End(); ++it)
{
Load::Pointer load = it.Value();
LoadNoisyLandmark *landmark = dynamic_cast<LoadNoisyLandmark*>(load.GetPointer());
itkAssertInDebugAndIgnoreInReleaseMacro(landmark != ITK_NULLPTR);
if(!landmark->IsOutlier())
{
const VectorType & shape = landmark->GetShape();
const Element * element = landmark->GetContainedElement();
const FEMIndexType numberOfDOFs = element->GetNumberOfDegreesOfFreedomPerNode();
const FEMIndexType numberOfNodes = element->GetNumberOfNodes();
MatrixType nodeTensor(numberOfDOFs, numberOfDOFs);
MatrixType landmarkTensor(numberOfDOFs, numberOfDOFs);
landmarkTensor.fill(0.0);
for(FEMIndexType nodeId = 0; nodeId < numberOfNodes; ++nodeId)
{
for(FEMIndexType dofXId = 0; dofXId < numberOfDOFs; dofXId++)
{
for(FEMIndexType dofYId = 0; dofYId < numberOfDOFs; dofYId++)
{
unsigned nx = element->GetDegreeOfFreedom(nodeId * numberOfDOFs + dofXId);
unsigned ny = element->GetDegreeOfFreedom(nodeId * numberOfDOFs + dofYId);
nodeTensor[dofXId][dofYId] = this->m_ls->GetMatrixValue(nx, ny, m_MeshStiffnessMatrixIndex);
}
}
landmarkTensor += nodeTensor * shape[nodeId];
}
if(landmark->HasStructureTensor())
{
landmarkTensor *= landmark->GetStructureTensor();
}
landmark->SetLandmarkTensor(landmarkTensor);
}
}
}
template <unsigned int VDimension>
void
RobustSolver<VDimension>
::NthElementWRTDisplacementError(unsigned int nthPoint)
{
// Sort the landmarks according to the error norm
if(nthPoint == 0)
{
return;
}
typedef std::vector<Load::Pointer> LoadVectorType;
LoadContainerType *container = this->m_FEMObject->GetModifiableLoadContainer();
if(!container)
{
itkExceptionMacro("Missing container");
}
LoadVectorType &loadVector = container->CastToSTLContainer();
LoadVectorType::iterator it = loadVector.begin();
std::advance(it, nthPoint - 1);
LoadVectorType::iterator nth = it;
std::nth_element(loadVector.begin(), nth ,loadVector.end(), CompareLandmarkDisplacementError());
}
template <unsigned int VDimension>
void
RobustSolver<VDimension>
::UnselectLandmarks(unsigned int nUnselected)
{
if(nUnselected == 0)
{
return;
}
typedef std::vector<Load::Pointer> LoadVectorType;
LoadContainerType *container = this->m_FEMObject->GetModifiableLoadContainer();
if(!container)
{
itkExceptionMacro("Missing container");
}
LoadVectorType &loadVector = container->CastToSTLContainer();
LoadVectorType::iterator it;
it = loadVector.begin();
std::advance(it, nUnselected - 1);
LoadVectorType::iterator nth = it;
for(it = loadVector.begin(); it <= nth; it++)
{
LoadNoisyLandmark * landmark = dynamic_cast<LoadNoisyLandmark*>((*it).GetPointer());
itkAssertInDebugAndIgnoreInReleaseMacro(landmark != ITK_NULLPTR);
landmark->SetOutlier(true);
}
}
template <unsigned int VDimension>
void
RobustSolver<VDimension>
::DeleteFromLandmarkBeginning(unsigned int nDeleted)
{
if(nDeleted == 0)
{
return;
}
typedef std::vector<Load::Pointer> LoadVectorType;
LoadContainerType *container = this->m_FEMObject->GetModifiableLoadContainer();
if(!container)
{
itkExceptionMacro("Missing container");
}
LoadVectorType &loadVector = container->CastToSTLContainer();
LoadVectorType::iterator it;
it = loadVector.begin();
std::advance(it, nDeleted);
LoadVectorType::iterator nth = it;
loadVector.erase(loadVector.begin(), nth);
}
template <unsigned int VDimension>
void
RobustSolver<VDimension>
::DeleteLandmarksOutOfMesh()
{
typedef typename FEMObjectType::LoadIdentifier LoadIdentifier;
typedef itk::VectorContainer< LoadIdentifier, Load::Pointer> VectorContainerType;
typename VectorContainerType::Pointer newLoadContainer = VectorContainerType::New();
LoadIdentifier numToRemoveLoads = NumericTraits< LoadIdentifier >::ZeroValue();
LoadContainerType * container = this->m_FEMObject->GetModifiableLoadContainer();
if(!container)
{
itkExceptionMacro("Missing container");
}
for(LoadContainerIterator it = container->Begin(); it != container->End(); ++it)
{
Load::Pointer load = it.Value();
LoadNoisyLandmark *landmark = dynamic_cast<LoadNoisyLandmark*>(load.GetPointer());
if(landmark == ITK_NULLPTR)
{
itkExceptionMacro("Encounter landmark that is not a LoadNoisyLandmark");
}
if(landmark->IsOutOfMesh())
{
numToRemoveLoads++;
}
else
{
newLoadContainer->push_back(landmark);
}
}
// If there were landmarks outside of the mesh, then the load container must
// be updated to hold only the landmarks that are inside of the Mesh.
if( numToRemoveLoads )
{
// Empty the load container first.
container->clear();
// add the new loads to Load container
for(LoadContainerIterator it = newLoadContainer->Begin(); it != newLoadContainer->End(); ++it)
{
this->m_FEMObject->AddNextLoad(it.Value());
}
}
}
template <unsigned int VDimension>
void
RobustSolver<VDimension>
::RescaleLandmarkStiffnessMatrix(double oldPointTensorPonderation)
{
// PointTensorPonderation is changing throughout outlier rejection.
// This function scales the point stiffness matrix by the updated
// pointTensorPonderation
double newPointTensorPonderation =
this->GetLandmarkTensorPonderation() / oldPointTensorPonderation;
this->m_ls->ScaleMatrix(newPointTensorPonderation, m_LandmarkStiffnessMatrixIndex);
}
template <unsigned int VDimension>
void
RobustSolver<VDimension>
::AssembleMeshStiffnessMatrix()
{
// Assemble the mechanical stiffness matrix from the mesh
// if no DOFs exist in a system, we have nothing to do
if( this->m_NGFN <= 0 )
{
return;
}
// assemble the mechanical matrix by stepping over all elements
FEMIndexType numberOfElements = this->m_FEMObject->GetNumberOfElements();
for( FEMIndexType i = 0; i < numberOfElements; i++)
{
// call the function that actually moves the element matrix to the master matrix.
Element::Pointer element = this->m_FEMObject->GetElement(i);
this->AssembleElementMatrixWithID(element, this->m_MeshStiffnessMatrixIndex);
}
}
template <unsigned int VDimension>
void
RobustSolver<VDimension>
::AssembleElementMatrixWithID(const Element::Pointer & element, unsigned int matrixIndex)
{
// copy the element stiffness matrix for faster access.
Element::MatrixType Ke;
element->GetStiffnessMatrix(Ke);
// same for number of DOF
const FEMIndexType numberOfDOFs = element->GetNumberOfDegreesOfFreedom();
// step over all rows in element matrix
for( FEMIndexType j = 0; j < numberOfDOFs; j++ )
{
// step over all columns in element matrix
for( FEMIndexType k = 0; k < numberOfDOFs; k++ )
{
// error checking. all GFN should be >= 0 and < NGFN
const unsigned int dofj = element->GetDegreeOfFreedom(j);
const unsigned int dofk = element->GetDegreeOfFreedom(k);
if( dofj >= this->m_NGFN || dofk >= this->m_NGFN )
{
throw FEMExceptionSolution(__FILE__, __LINE__, "Solver::AssembleElementMatrix()", "Illegal GFN!");
}
if( Math::NotExactlyEquals(Ke[j][k], Float(0.0)) )
{
this->m_ls->AddMatrixValue(dofj, dofk, Ke[j][k], matrixIndex);
}
}
}
}
template <unsigned int VDimension>
void
RobustSolver<VDimension>
::AssembleLandmarkStiffnessMatrix()
{
// Assemble the contribution matrix of the landmarks
const double pointTensorPonderation = this->GetLandmarkTensorPonderation();
LoadContainerType *container = this->m_FEMObject->GetModifiableLoadContainer();
if(!container)
{
itkExceptionMacro("Missing container");
}
LoadContainerIterator it = container->Begin();
for(;it != container->End(); ++it)
{
Load::Pointer load = it.Value();
LoadNoisyLandmark *landmark = dynamic_cast<LoadNoisyLandmark*>(load.GetPointer());
if(landmark == ITK_NULLPTR)
{
itkExceptionMacro("Encounter landmark that is not a LoadNoisyLandmark");
}
if(!landmark->IsOutlier())
{
const double confidence = landmark->GetConfidence();
const MatrixType & tens = landmark->GetLandmarkTensor();
const VectorType & shape = landmark->GetShape();
const Element * element = landmark->GetContainedElement();
const FEMIndexType numberOfDOFs = element->GetNumberOfDegreesOfFreedomPerNode();
const FEMIndexType numberOfNodes = element->GetNumberOfNodes();
// fill the diagonal matrices
for(FEMIndexType k = 0; k < numberOfNodes; ++k)
{
const double barCoor = shape[k] * shape[k];
for(FEMIndexType n = 0; n < numberOfDOFs; n++)
{
for(FEMIndexType m = 0; m < numberOfDOFs; m++)
{
const int dofn = element->GetDegreeOfFreedom(k * numberOfDOFs + n);
const int dofm = element->GetDegreeOfFreedom(k * numberOfDOFs + m);
const float value = static_cast<float>( barCoor * m_TradeOffImageMeshEnergy * pointTensorPonderation * (tens(n,m)) * confidence );
this->m_ls->AddMatrixValue(dofn, dofm, value, m_LandmarkStiffnessMatrixIndex);
}
}
}
// fill the extradiagonal matrices
for(FEMIndexType i = 0; i < numberOfNodes - 1; i++)
{
for(FEMIndexType j = i + 1; j < numberOfNodes; j++)
{
const double barCoor = shape[i] * shape[j];
for(FEMIndexType n = 0; n < numberOfDOFs; n++)
{
for(FEMIndexType m = 0; m < numberOfDOFs; m++)
{
const int dofn = element->GetDegreeOfFreedom(i * numberOfDOFs + n);
const int dofm = element->GetDegreeOfFreedom(j * numberOfDOFs + m);
const float value = static_cast<float>( barCoor * m_TradeOffImageMeshEnergy * pointTensorPonderation * (tens(n, m)) * confidence );
this->m_ls->AddMatrixValue(dofn, dofm, value, m_LandmarkStiffnessMatrixIndex);
this->m_ls->AddMatrixValue(dofm, dofn, value, m_LandmarkStiffnessMatrixIndex);
}
}
}
}
}
}
}
template <unsigned int VDimension>
void
RobustSolver<VDimension>
::RemoveUnselectedLandmarkContributionInPointStiffnessMatrix()
{
// Remove the contribution of the unselected landmarks from the landmark
// stiffness matrix
const double pointTensorPonderation = GetLandmarkTensorPonderation();
itkDebugMacro("Removing unselected blocks contribution, " << "pointTensorPonderation is " << pointTensorPonderation);
LoadContainerType *container = this->m_FEMObject->GetModifiableLoadContainer();
if(!container)
{
itkExceptionMacro("Missing container");
}
LoadContainerIterator it = container->Begin();
for(;it != container->End(); ++it)
{
Load::Pointer load = it.Value();
LoadNoisyLandmark *landmark = dynamic_cast<LoadNoisyLandmark*>(load.GetPointer());
itkAssertInDebugAndIgnoreInReleaseMacro(landmark != ITK_NULLPTR);
if(landmark->IsOutlier())
{
const float confidence = landmark->GetConfidence();
const MatrixType & tens = landmark->GetLandmarkTensor();
const VectorType & shape = landmark->GetShape();
Element::ConstPointer element = landmark->GetElement(0);
const FEMIndexType numberOfDOFs = element->GetNumberOfDegreesOfFreedomPerNode();
const FEMIndexType numberOfNodes = element->GetNumberOfNodes();
for(FEMIndexType k = 0; k < numberOfNodes; ++k)
{
const double barCoor = shape[k] * shape[k];
for(FEMIndexType n = 0; n < numberOfDOFs; n++)
{
for(FEMIndexType m = 0; m < numberOfDOFs; m++)
{
const int dofn = element->GetDegreeOfFreedom(k * numberOfDOFs + n);
const int dofm = element->GetDegreeOfFreedom(k * numberOfDOFs + m);
const float value = static_cast<float>( -barCoor * m_TradeOffImageMeshEnergy * pointTensorPonderation * (tens(n, m)) * confidence );
this->m_ls->AddMatrixValue(dofn, dofm, value, m_LandmarkStiffnessMatrixIndex);
}
}
}
for(FEMIndexType i = 0; i < numberOfNodes - 1; i++)
{
for(FEMIndexType j = i + 1; j < numberOfNodes; j++)
{
const double barCoor = shape[i] * shape[j];
for(FEMIndexType n = 0; n < numberOfDOFs; n++)
{
for(FEMIndexType m = 0; m < numberOfDOFs; m++)
{
const int dofn = element->GetDegreeOfFreedom(i * numberOfDOFs + n);
const int dofm = element->GetDegreeOfFreedom(j * numberOfDOFs + m);
const float value = static_cast<float>( -barCoor * m_TradeOffImageMeshEnergy * pointTensorPonderation * (tens(n,m)) * confidence );
this->m_ls->AddMatrixValue(dofn, dofm, value, m_LandmarkStiffnessMatrixIndex);
this->m_ls->AddMatrixValue(dofm, dofn, value, m_LandmarkStiffnessMatrixIndex);
}
}
}
}
}
}
}
template <unsigned int VDimension>
float
RobustSolver<VDimension>
::GetLandmarkTensorPonderation(void) const
{
const LoadContainerType * loadContainer = this->m_FEMObject->GetLoadContainer();
if(!loadContainer)
{
itkExceptionMacro("Missing load container");
}
const NodeContainerType * nodeContainer = this->m_FEMObject->GetNodeContainer();
if(!nodeContainer)
{
itkExceptionMacro("Missing node container");
}
const float ponderation =
static_cast<float>( nodeContainer->Size() ) /
static_cast<float>( loadContainer->Size() );
return ponderation;
}
template <unsigned int VDimension>
void
RobustSolver<VDimension>
::AssembleGlobalMatrixFromLandmarksAndMeshMatrices()
{
this->m_ls->CopyMatrix( this->m_MeshStiffnessMatrixIndex, this->m_StiffnessMatrixIndex );
this->m_ls->AddMatrixMatrix( this->m_StiffnessMatrixIndex, this->m_LandmarkStiffnessMatrixIndex);
}
template <unsigned int VDimension>
void
RobustSolver<VDimension>
::AssembleF()
{
const double pointTensorPonderation = GetLandmarkTensorPonderation();
this->m_ls->InitializeVector(m_LandmarkForceIndex);
LoadContainerType *container = this->m_FEMObject->GetModifiableLoadContainer();
if(!container)
{
itkExceptionMacro("Missing container");
}
LoadContainerIterator it = container->Begin();
for(;it != container->End(); ++it)
{
Load::Pointer load = it.Value();
LoadNoisyLandmark *landmark = dynamic_cast<LoadNoisyLandmark*>(load.GetPointer());
itkAssertInDebugAndIgnoreInReleaseMacro(landmark != ITK_NULLPTR);
if(!landmark->IsOutlier())
{
const double confidence = landmark->GetConfidence();
const VectorType & realDisplacement = landmark->GetRealDisplacement();
const MatrixType & tensor = landmark->GetLandmarkTensor();
const VectorType & shape = landmark->GetShape();
const Element * element = landmark->GetContainedElement();
const FEMIndexType numberOfDOFs = element->GetNumberOfDegreesOfFreedomPerNode();
const FEMIndexType numberOfNodes = element->GetNumberOfNodes();
for(FEMIndexType m = 0;m < numberOfNodes; ++m)
{
double barCoor = shape[m];
const VectorType weightedRealDisplacement = confidence * barCoor * pointTensorPonderation * m_TradeOffImageMeshEnergy * ((tensor) * realDisplacement);
for(FEMIndexType j = 0; j < numberOfDOFs; ++j)
{
const int index = element->GetDegreeOfFreedom(m * numberOfDOFs + j);
this->m_ls->AddVectorValue(index, weightedRealDisplacement[j], this->m_LandmarkForceIndex);
}
}
}
}
}
template <unsigned int VDimension>
void
RobustSolver<VDimension>
::CalculateExternalForces()
{
this->m_ls->MultiplyMatrixSolution( this->m_ExternalForceIndex, this->m_MeshStiffnessMatrixIndex, this->m_SolutionIndex);
}
template <unsigned int VDimension>
void
RobustSolver<VDimension>
::AddExternalForcesToSetMeshZeroEnergy()
{
// Add exteranl force to set the mesh energy to be zero, which
// is equivalent to starting FEM solver from the deformed mesh
this->m_ls->CopyVector( this->m_LandmarkForceIndex, this->m_ForceIndex );
this->m_ls->AddVectorVector( this->m_ForceIndex, this->m_ExternalForceIndex );
}
template <unsigned int VDimension>
void
RobustSolver<VDimension>
::SolveSystem()
{
// Solve the linear system of equations
// note that VNL LS solver uses the matrix and vector with index zero to construct the LS
this->m_ls->Solve();
}
template <unsigned int VDimension>
void
RobustSolver<VDimension>
::InitializeInterpolationGrid()
{
const InterpolationGridRegionType & region = this->GetRegion();
InterpolationGridSizeType size = region.GetSize();
for( unsigned int i = 0; i < this->FEMDimension; i++ )
{
if( size[i] == 0 )
{
itkExceptionMacro("Size must be specified.");
}
}
this->m_InterpolationGrid = InterpolationGridType::New();
this->m_InterpolationGrid->SetOrigin( this->GetOrigin() );
this->m_InterpolationGrid->SetSpacing( this->GetSpacing() );
this->m_InterpolationGrid->SetDirection( this->GetDirection() );
this->m_InterpolationGrid->SetRegions( this->GetRegion() );
this->m_InterpolationGrid->Allocate();
// initialize all pointers in interpolation grid image to 0
this->m_InterpolationGrid->FillBuffer(ITK_NULLPTR);
// fill the interpolation grid with proper pointers to elements
FEMIndexType numberOfElements = this->m_FEMObject->GetNumberOfElements();
for( FEMIndexType index = 0; index < numberOfElements; index++ )
{
const Element * element = this->m_FEMObject->GetElement( index );
// get square boundary box of an element
VectorType v1 = element->GetNodeCoordinates(0); // lower left corner
VectorType v2 = v1; // upper right corner
const FEMIndexType NumberOfDimensions = element->GetNumberOfSpatialDimensions();
for( FEMIndexType n = 1; n < element->GetNumberOfNodes(); n++ )
{
const VectorType & v = element->GetNodeCoordinates(n);
for( FEMIndexType d = 0; d < NumberOfDimensions; d++ )
{
if( v[d] < v1[d] )
{
v1[d] = v[d];
}
if( v[d] > v2[d] )
{
v2[d] = v[d];
}
}
}
// convert boundary box corner points into discrete image indexes.
InterpolationGridIndexType vi1;
InterpolationGridIndexType vi2;
typedef Point<Float, FEMDimension> PointType;
PointType vp1;
PointType vp2;
PointType pt;
for( unsigned int i = 0; i < FEMDimension; i++ )
{
vp1[i] = v1[i];
vp2[i] = v2[i];
}
// obtain the Index of BB corner and check whether it is within image.
// if it is not, we ignore the entire element.
if( !this->m_InterpolationGrid->TransformPhysicalPointToIndex(vp1, vi1) )
{
continue;
}
if( !this->m_InterpolationGrid->TransformPhysicalPointToIndex(vp2, vi2) )
{
continue;
}
InterpolationGridSizeType region_size;
for( unsigned int i = 0; i < FEMDimension; i++ )
{
region_size[i] = vi2[i] - vi1[i] + 1;
}
InterpolationGridRegionType interRegion(vi1, region_size);
// initialize the iterator that will step over all grid points within
// element boundary box.
ImageRegionIterator<InterpolationGridType> iter(this->m_InterpolationGrid, interRegion);
// update the element pointers in the points defined within the region.
VectorType global_point(NumberOfDimensions);
VectorType local_point(NumberOfDimensions);
// step over all points within the region
for( iter.GoToBegin(); !iter.IsAtEnd(); ++iter )
{
// note: Iteratior is guarantied to be within image, since the
// elements with BB outside are skipped before.
this->m_InterpolationGrid->TransformIndexToPhysicalPoint(iter.GetIndex(), pt);
for( FEMIndexType d = 0; d < NumberOfDimensions; d++ )
{
global_point[d] = pt[d];
}
// if the point is within the element, we update the pointer at
// this point in the interpolation grid image.
if( element->GetLocalFromGlobalCoordinates(global_point, local_point) )
{
iter.Set( element );
}
} // next point in region
} // next element
}
}
} // end namespace itk::fem
#endif // itkFEMRobustSolver_hxx
|