This file is indexed.

/usr/include/ITK-4.9/itkFEMSolver.hxx is in libinsighttoolkit4-dev 4.9.0-4ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkFEMSolver_hxx
#define itkFEMSolver_hxx

#include "itkFEMSolver.h"

#include "itkFEMLoadNode.h"
#include "itkFEMLoadElementBase.h"
#include "itkFEMElementBase.h"
#include "itkFEMLoadBC.h"
#include "itkFEMLoadBCMFC.h"
#include "itkFEMLoadLandmark.h"
#include "itkTimeProbe.h"
#include "itkImageRegionIterator.h"

#include <algorithm>
#include "itkMath.h"

namespace itk
{
namespace fem
{

template <unsigned int VDimension>
Solver<VDimension>
::Solver()
{
  this->SetLinearSystemWrapper(&m_lsVNL);

  this->m_NGFN = 0;
  this->m_NMFC = 0;
  this->m_FEMObject = ITK_NULLPTR;
  this->m_Origin.Fill( 0.0 );
  this->m_Spacing.Fill( 1.0 );

  this->ProcessObject::SetNumberOfRequiredInputs(1);
  this->ProcessObject::SetNumberOfRequiredOutputs(1);
  this->ProcessObject::SetNthOutput(0, this->MakeOutput(0) );
}

template <unsigned int VDimension>
Solver<VDimension>
::~Solver()
{
  FEMObjectType *output = this->GetOutput();
  output->Clear();
}

template <unsigned int VDimension>
void
Solver<VDimension>
::SetInput(FEMObjectType *fem)
{
  // Process object is not const-correct so the const_cast is required here
  this->ProcessObject::SetNthInput(0,
                                   const_cast<FEMObjectType *>( fem ) );
  this->m_FEMObject = fem;
  this->m_NGFN = fem->GetNumberOfDegreesOfFreedom();
  this->m_NMFC = fem->GetNumberOfMultiFreedomConstraints();
}

template <unsigned int VDimension>
void
Solver<VDimension>
::SetInput( unsigned int index, FEMObjectType * fem )
{
  // Process object is not const-correct so the const_cast is required here
  this->ProcessObject::SetNthInput(index,
                                   const_cast<FEMObjectType *>( fem ) );
  this->m_FEMObject = fem;
  this->m_NGFN = fem->GetNumberOfDegreesOfFreedom();
  this->m_NMFC = fem->GetNumberOfMultiFreedomConstraints();

}

template <unsigned int VDimension>
typename Solver<VDimension>::FEMObjectType *
Solver<VDimension>
::GetInput(void)
  {
  if( this->GetNumberOfInputs() < 1 )
    {
    return ITK_NULLPTR;
    }

  return itkDynamicCastInDebugMode<FEMObjectType *>(this->ProcessObject::GetInput(0) );
  }

template <unsigned int VDimension>
typename Solver<VDimension>::FEMObjectType *
Solver<VDimension>
::GetInput(unsigned int idx)
  {
  return itkDynamicCastInDebugMode<FEMObjectType *>(this->ProcessObject::GetInput(idx) );
  }

template <unsigned int VDimension>
typename Solver<VDimension>::Float
Solver<VDimension>
::GetTimeStep() const
{
  return NumericTraits< Float >::ZeroValue();
}

template <unsigned int VDimension>
void
Solver<VDimension>
::SetTimeStep(Float itkNotUsed(dt))
{
}

template <unsigned int VDimension>
typename Solver<VDimension>::Float
Solver<VDimension>
::GetSolution(unsigned int i, unsigned int which)
{
  return this->m_ls->GetSolutionValue(i, which);
}

template <unsigned int VDimension>
typename Solver<VDimension>::DataObjectPointer
Solver<VDimension>
::MakeOutput(DataObjectPointerArraySizeType itkNotUsed(idx))
{
  return FEMObjectType::New().GetPointer();
}

template <unsigned int VDimension>
typename Solver<VDimension>::FEMObjectType *
Solver<VDimension>
::GetOutput()
  {
  if( this->GetNumberOfOutputs() < 1 )
    {
    return ITK_NULLPTR;
    }

  return itkDynamicCastInDebugMode<FEMObjectType *>(this->ProcessObject::GetOutput(0));
  }

template <unsigned int VDimension>
typename Solver<VDimension>::FEMObjectType *
Solver<VDimension>
::GetOutput(unsigned int idx)
  {
  FEMObjectType* out = dynamic_cast<FEMObjectType *>
    (this->ProcessObject::GetOutput(idx) );

  if( out == ITK_NULLPTR )
    {
    itkWarningMacro( << "dynamic_cast to output type failed" );
    }
  return out;
  }

// ----------------------------------------------------------------------------
template <unsigned int VDimension>
void
Solver<VDimension>
::GenerateData()
{
  /* Call Solver */
  this->RunSolver();
}

template <unsigned int VDimension>
void
Solver<VDimension>
::PrintSelf(std::ostream& os, Indent indent) const
{
  Superclass::PrintSelf( os, indent );
  os << indent << "Global degrees of freedom: " << m_NGFN << std::endl;
  os << indent << "Multi freedom constraints: " << m_NMFC << std::endl;
  os << indent << "FEM Object: " << m_FEMObject << std::endl;
}

template <unsigned int VDimension>
void
Solver<VDimension>
::SetLinearSystemWrapper(LinearSystemWrapper::Pointer ls)
{
  m_ls = ls; // update the pointer to LinearSystemWrapper object

  this->InitializeLinearSystemWrapper();
}

template <unsigned int VDimension>
void
Solver<VDimension>
::InitializeLinearSystemWrapper(void)
{
  // set the maximum number of matrices and vectors that
  // we will need to store inside.
  m_ls->SetNumberOfMatrices(1);
  m_ls->SetNumberOfVectors(2);
  m_ls->SetNumberOfSolutions(1);
}

template <unsigned int VDimension>
void
Solver<VDimension>
::AssembleK()
{
  // if no DOFs exist in a system, we have nothing to do
  int NGFN = m_FEMObject->GetNumberOfDegreesOfFreedom();

  if( NGFN <= 0 )
    {
    return;
    }

  int NMFC = 0;  // reset number of MFC in a system

  /**
   * Before we can start the assembly procedure, we need to know,
   * how many boundary conditions if form of MFCs are there in a system.
   */

  // search for MFC's in Loads array, because they affect the master stiffness
  // matrix
  int numLoads = m_FEMObject->GetLoadContainer()->Size();
  for( int l = 0; l < numLoads; l++ )
    {
    if( LoadBCMFC::Pointer l1 = dynamic_cast<LoadBCMFC *>( m_FEMObject->GetLoad(l).GetPointer() ) )
      {
      // store the index of an LoadBCMFC object for later
      l1->SetIndex(NMFC);

      // increase the number of MFC
      NMFC++;
      }
    }

  /**
   * Now we can assemble the master stiffness matrix from
   * element stiffness matrices.
   *
   * Since we're using the Lagrange multiplier method to apply the MFC,
   * each constraint adds a new global DOF.
   */
  this->InitializeMatrixForAssembly(NGFN + NMFC);

  /**
  * Step over all elements
  */
  unsigned int numberOfElements = m_FEMObject->GetNumberOfElements();
  for( unsigned int i = 0; i < numberOfElements; i++ )
    {
    // Call the function that actually moves the element matrix
    // to the master matrix.
    Element::Pointer e = m_FEMObject->GetElement( i );
    this->AssembleElementMatrix(e);
    }

  /**
  * Step over all the loads again to add the landmark contributions
  * to the appropriate place in the stiffness matrix
  */
  unsigned int numberOfLoads = m_FEMObject->GetNumberOfLoads();
  for( unsigned int i = 0; i < numberOfLoads; i++ )
    {
    if( LoadLandmark::Pointer l3 = dynamic_cast<LoadLandmark *>( m_FEMObject->GetLoad(i).GetPointer() ) )
      {
      l3->AssignToElement(m_FEMObject->GetModifiableElementContainer() );
      // dynamic_cast< LoadLandmark * >( &( *( *l2 ) ) ) )
      Element::ConstPointer ep = l3->GetElement(0).GetPointer();
      this->AssembleLandmarkContribution( ep, l3->GetEta() );
      }
    }

  this->FinalizeMatrixAfterAssembly();

}

template <unsigned int VDimension>
void
Solver<VDimension>
::InitializeMatrixForAssembly(unsigned int N)
{
  // We use LinearSystemWrapper object, to store the K matrix.
  this->m_ls->SetSystemOrder(N);
  this->m_ls->InitializeMatrix();
}

template <unsigned int VDimension>
void
Solver<VDimension>
::AssembleLandmarkContribution(Element::ConstPointer e, float eta)
{
  // Copy the element "landmark" matrix for faster access.
  Element::MatrixType Le;

  e->GetLandmarkContributionMatrix(eta, Le);

  // ... same for number of DOF
  int Ne = e->GetNumberOfDegreesOfFreedom();
  // step over all rows in element matrix
  for( int j = 0; j < Ne; j++ )
    {
    // step over all columns in element matrix
    for( int k = 0; k < Ne; k++ )
      {
      // error checking. all GFN should be =>0 and <NGFN
      if( e->GetDegreeOfFreedom(j) >= this->m_NGFN
          || e->GetDegreeOfFreedom(k) >= this->m_NGFN  )
        {
        throw FEMExceptionSolution(__FILE__, __LINE__, "Solver::AssembleLandmarkContribution()", "Illegal GFN!");
        }

      /**
       * Here we finally update the corresponding element
       * in the master stiffness matrix. We first check if
       * element in Le is zero, to prevent zeros from being
       * allocated in sparse matrix.
       */
      if( Math::NotExactlyEquals(Le[j][k], Float(0.0)) )
        {
        this->m_ls->AddMatrixValue(e->GetDegreeOfFreedom(j), e->GetDegreeOfFreedom(k), Le[j][k]);
        }
      }
    }
}

template <unsigned int VDimension>
void
Solver<VDimension>
::AssembleElementMatrix(Element::Pointer e)
{
  // Copy the element stiffness matrix for faster access.
  Element::MatrixType Ke;

  e->GetStiffnessMatrix(Ke);

  // ... same for number of DOF
  int Ne = e->GetNumberOfDegreesOfFreedom();
  // step over all rows in element matrix
  for( int j = 0; j < Ne; j++ )
    {
    // step over all columns in element matrix
    for( int k = 0; k < Ne; k++ )
      {
      // error checking. all GFN should be =>0 and <NGFN
      if( e->GetDegreeOfFreedom(j) >= this->m_NGFN
          || e->GetDegreeOfFreedom(k) >= this->m_NGFN  )
        {
        throw FEMExceptionSolution(__FILE__, __LINE__, "Solver::AssembleElementMatrix()", "Illegal GFN!");
        }

      /**
       * Here we finally update the corresponding element
       * in the master stiffness matrix. We first check if
       * element in Ke is zero, to prevent zeros from being
       * allocated in sparse matrix.
       */
      if( Math::NotExactlyEquals(Ke[j][k], Float(0.0)) )
        {
        this->m_ls->AddMatrixValue(e->GetDegreeOfFreedom(j), e->GetDegreeOfFreedom(k), Ke[j][k]);
        }
      }
    }
}

template <unsigned int VDimension>
void
Solver<VDimension>
::AssembleF(int dim)
{
  // Vector that stores element nodal loads
  Element::VectorType Fe;

  // Type that stores IDs of fixed DOF together with the values to
  // which they were fixed.
  typedef std::map<Element::DegreeOfFreedomIDType, Float> BCTermType;
  BCTermType bcterm;

  /* if no DOFs exist in a system, we have nothing to do */
  if( m_NGFN <= 0 )
    {
    return;
    }

  /* Initialize the master force vector */
  m_ls->InitializeVector();

  /**
   * Convert the external loads to the nodal loads and
   * add them to the master force vector F.
   */
  unsigned int numberOfLoads = m_FEMObject->GetNumberOfLoads();
  for( unsigned int l = 0; l < numberOfLoads; l++ )
    {
    Load::Pointer l0 = m_FEMObject->GetLoad( l );

    /**
     * Pass the vector to the solution to the Load object.
     *  FIXME: Can this be removed?
     */
    l0->SetSolution(m_ls);

    /**
     * Here we only handle Nodal loads
     */
    if( LoadNode::Pointer l1 = dynamic_cast<LoadNode *>( l0.GetPointer() ) )
      {
      // yep, we have a nodal load
      // size of a force vector in load must match number of DOFs in node
      if( ( l1->GetForce().size() % l1->GetElement()->GetNumberOfDegreesOfFreedomPerNode() ) != 0 )
        {
        throw FEMExceptionSolution(__FILE__,
                                   __LINE__,
                                   "Solver::AssembleF()",
                                   "Illegal size of a force vector in LoadNode object!");
        }
      // we simply copy the load to the force vector
      for( unsigned int d = 0; d < ( l1->GetElement()->GetNumberOfDegreesOfFreedomPerNode() ); d++ )
        {
        Element::DegreeOfFreedomIDType dof = l1->GetElement()->GetNode( l1->GetNode() )->GetDegreeOfFreedom(d);
        if( dof >= m_NGFN )
          {
          throw FEMExceptionSolution(__FILE__, __LINE__, "Solver::AssembleF()", "Illegal GFN!");
          }

        /**
         * If using the extra dim parameter, we can apply the force to
         * different isotropic dimension.
         *
         * FIXME: We assume that the implementation of force vector
         * inside the LoadNode class is correct for given number of
         * dimensions
         */
        m_ls->AddVectorValue(dof, l1->GetForce()
                             [d + l1->GetElement()->GetNumberOfDegreesOfFreedomPerNode() * dim]);
        }

      // that's all there is to DOF loads, go to next load in an array
      continue;
      }

    /**
     * Element loads...
     */
    if( LoadElement::Pointer l1 = dynamic_cast<LoadElement *>( l0.GetPointer() ) )
      {
      if( !( l1->GetElementArray().empty() ) )
        {
        /**
         * If array of element pointers is not empty,
         * we apply the load to all elements in that array
         */
        for( LoadElement::ElementPointersVectorType::const_iterator i = l1->GetElementArray().begin();
             i != l1->GetElementArray().end(); i++ )
          {
          const Element *el0 = ( *i );
          // Call the Fe() function of the element that we are applying the load
          // to.
          // We pass a pointer to the load object as a paramater and a reference
          // to the nodal loads vector.
          l1->ApplyLoad(el0, Fe);

          unsigned int Ne = el0->GetNumberOfDegreesOfFreedom(); // ... element's
                                                                // number of DOF
          for( unsigned int j = 0; j < Ne; j++ )                // step over all
                                                                // DOF
            {
            // error checking
            if( el0->GetDegreeOfFreedom(j) >= m_NGFN )
              {
              throw FEMExceptionSolution(__FILE__, __LINE__, "Solver::AssembleF()", "Illegal GFN!");
              }

            // update the master force vector (take care of the correct
            // isotropic dimensions)
            m_ls->AddVectorValue( el0->GetDegreeOfFreedom(j), Fe(j + dim * Ne) );
            }
          }
        }
      else
        {
        /**
         * If the list of element pointers in load object is empty,
         * we apply the load to all elements in a system.
         */
        unsigned int numberOfElements = m_FEMObject->GetNumberOfElements();
        for( unsigned int e = 0; e < numberOfElements; e++ )
          {
          // Element::Pointer el = m_FEMObject->GetElement(e);
          const Element *el = m_FEMObject->GetElement(e);
          l1->ApplyLoad(el, Fe);                                   // ...
                                                                   // element's
                                                                   // force
                                                                   // vector

          unsigned int Ne = el->GetNumberOfDegreesOfFreedom(); // ...
                                                               // element's
                                                               // number of
                                                               // DOF
          for( unsigned int j = 0; j < Ne; j++ )               // step over all DOF
            {
            if( el->GetDegreeOfFreedom(j) >= m_NGFN )
              {
              throw FEMExceptionSolution(__FILE__, __LINE__, "Solver::AssembleF()", "Illegal GFN!");
              }

            // update the master force vector (take care of the correct
            // isotropic dimensions)
            m_ls->AddVectorValue( el->GetDegreeOfFreedom(j), Fe(j + dim * Ne) );
            }
          }
        }

      // skip to next load in an array
      continue;
      }

    /**
     * Handle boundary conditions in form of MFC loads are handled next.
     */
    if( LoadBCMFC::Pointer l1 = dynamic_cast<LoadBCMFC *>( l0.GetPointer() ) )
      {
      m_ls->SetVectorValue( m_NGFN + l1->GetIndex(), l1->GetRightHandSideTerm(dim) );

      // skip to next load in an array
      continue;
      }

    /**
     * Handle essential boundary conditions.
     */
    if( LoadBC::Pointer l1 = dynamic_cast<LoadBC *>( l0.GetPointer() ) )
      {
      // Here we just store the values of fixed DOFs. We can't set it here,
      // because
      // it may be changed by other loads that are applied later.

      bcterm[l1->GetElement()->GetDegreeOfFreedom( l1->GetDegreeOfFreedom() )] =
        l1->GetValue()[dim];

      // skip to the next load in an array
      continue;
      }

    /**
     * If we got here, we were unable to handle that class of Load object.
     * We do nothing...
     */
    }  // for(LoadArray::iterator l ... )

  /**
   * Adjust the master force vector for essential boundary
   * conditions as required.
   */
  if( m_ls->IsVectorInitialized(1) )
    {
    // Add the vector generated by ApplyBC to the solution vector
    const unsigned int totGFN = m_NGFN + m_NMFC;
    for( unsigned int i = 0; i < totGFN; i++ )
      {
      m_ls->AddVectorValue( i, m_ls->GetVectorValue(i, 1) );
      }
    }
  // Set the fixed DOFs to proper values
  for( BCTermType::iterator q = bcterm.begin(); q != bcterm.end(); q++ )
    {
    m_ls->SetVectorValue(q->first, q->second);
    }
}

template <unsigned int VDimension>
void
Solver<VDimension>
::DecomposeK()
{
}

template <unsigned int VDimension>
void
Solver<VDimension>
::RunSolver()
{

  itk::TimeProbe timer;

  timer.Start();

  this->AssembleK();

  this->AssembleF();

  // Check if master stiffness matrix and master force vector were
  // properly initialized.
  if( !m_ls->IsMatrixInitialized() )
    {
    throw FEMExceptionSolution(__FILE__, __LINE__, "FEMObject::Solve()", "Master stiffness matrix was not initialized!");
    }
  if( !m_ls->IsVectorInitialized() )
    {
    throw FEMExceptionSolution(__FILE__, __LINE__, "FEMObject::Solve()", "Master force vector was not initialized!");
    }
  timer.Stop();
  itkDebugMacro( << "Assemble Matrix took " << timer.GetMean() << " seconds.\n" );

  itk::TimeProbe timer1;
  timer1.Start();
  // Solve the system of linear equations
  m_ls->InitializeSolution();
  m_ls->Solve();

  // copy the input to the output and add the displacements to update the nodal co-ordinates
  this->GetOutput()->DeepCopy(this->GetInput() );
  this->UpdateDisplacements();
  timer1.Stop();
  itkDebugMacro( << "FE Solution took " << timer1.GetMean() << " seconds.\n" );
}

template <unsigned int VDimension>
void
Solver<VDimension>
::UpdateDisplacements()
{
  FEMObjectType *femObject = this->GetOutput();

  int numNodes = femObject->GetNumberOfNodes();

  typedef Element::Node NodeType;

  itk::fem::Element::VectorType pt(VDimension);
  for( int i = 0; i < numNodes; i++ )
    {
    NodeType::Pointer node = femObject->GetNode(i);
    for( unsigned int j = 0; j < VDimension; j++ )
      {
      pt[j] = node->GetCoordinates()[j] + m_ls->GetSolutionValue(node->GetDegreeOfFreedom(j));
      }
    node->SetCoordinates(pt);
    }
}

template <unsigned int VDimension>
typename Solver<VDimension>::Float
Solver<VDimension>
::GetDeformationEnergy(unsigned int SolutionIndex)
{
  Float               U = 0.0f;
  Element::MatrixType LocalSolution;

  unsigned int numberOfElements = m_FEMObject->GetNumberOfElements();
  for( unsigned int index = 0; index < numberOfElements; index++ )
    {
    Element::Pointer e = m_FEMObject->GetElement( index );
    unsigned int     Ne = e->GetNumberOfDegreesOfFreedom();
    LocalSolution.set_size(Ne, 1);
    // step over all DOFs of element
    for( unsigned int j = 0; j < Ne; j++ )
      {
      LocalSolution[j][0] = m_ls->GetSolutionValue( e->GetDegreeOfFreedom(j), SolutionIndex );
      }

    U += e->GetElementDeformationEnergy(LocalSolution);
    }
  return U;
}

template <unsigned int VDimension>
void Solver<VDimension>
::ApplyBC(int dim, unsigned int matrix)
{
  // Vector with index 1 is used to store force correctios for BCs
  this->m_ls->DestroyVector(1);

  /* Step over all Loads */
  unsigned int numberOfLoads = this->m_FEMObject->GetNumberOfLoads();
  for( unsigned int i = 0; i < numberOfLoads; i++ )
    {

    Load::Pointer l0 = this->m_FEMObject->GetLoad( i );

    /**
     * Apply boundary conditions in form of MFC loads.
     *
     * We add the multi freedom constraints contribution to the master
     * stiffness matrix using the lagrange multipliers. Basically we only
     * change the last couple of rows and columns in K.
     */
    if( LoadBCMFC::Pointer c = dynamic_cast<LoadBCMFC *>( l0.GetPointer() ) )
      {
      /* step over all DOFs in MFC */
      for( LoadBCMFC::LhsType::iterator q = c->GetLeftHandSideArray().begin();
           q != c->GetLeftHandSideArray().end();
           q++ )
        {
        /* obtain the GFN of DOF that is in the MFC */
        Element::DegreeOfFreedomIDType gfn =
          q->m_element->GetDegreeOfFreedom(q->dof);

        /* error checking. all GFN should be =>0 and <NGFN */
        if( gfn >= m_NGFN )
          {
          throw FEMExceptionSolution(__FILE__, __LINE__, "Solver::ApplyBC()", "Illegal GFN!");
          }

        /* set the proper values in matster stiffnes matrix */
        // this is a symetric matrix...
        this->m_ls->SetMatrixValue(gfn, m_NGFN + c->GetIndex(), q->value, matrix);
        this->m_ls->SetMatrixValue(m_NGFN + c->GetIndex(), gfn, q->value, matrix); //
                                                                                   // this
                                                                                   // is
                                                                                   // a
                                                                                   // symetric
                                                                                   // matrix...
        }

      // skip to next load in an array
      continue;
      }

    /**
     * Apply essential boundary conditions
     */
    if( LoadBC::Pointer c = dynamic_cast<LoadBC *>( l0.GetPointer() ) )
      {
      Element::DegreeOfFreedomIDType fdof = c->GetElement()->GetDegreeOfFreedom( c->GetDegreeOfFreedom() );
      Float                          fixedvalue = c->GetValue()[dim];

      // Copy the corresponding row of the matrix to the vector that will
      // be later added to the master force vector.
      // NOTE: We need to copy the whole row first, and then clear it. This
      //       is much more efficient when using sparse matrix storage, than
      //       copying and clearing in one loop.

      // Get the column indices of the nonzero elements in an array.
      LinearSystemWrapper::ColumnArray cols;
      this->m_ls->GetColumnsOfNonZeroMatrixElementsInRow(fdof, cols, matrix);

      // Force vector needs updating only if DOF was not fixed to 0.0.
      if( fixedvalue != 0.0 )
        {
        // Initialize the master force correction vector as required
        if( !this->m_ls->IsVectorInitialized(1) )
          {
          this->m_ls->InitializeVector(1);
          }
        // Step over each nonzero matrix element in a row
        for( LinearSystemWrapper::ColumnArray::iterator cc = cols.begin(); cc != cols.end(); cc++ )
          {
          // Get value from the stiffness matrix
          Float d = this->m_ls->GetMatrixValue(fdof, *cc, matrix);

          // Store the appropriate value in bc correction vector (-K12*u2)
          //
          // See
          // http://titan.colorado.edu/courses.d/IFEM.d/IFEM.Ch04.d/IFEM.Ch04.pdf
          // chapter 4.1.3 (Matrix Forms of DBC Application Methods) for more
          // info.
          this->m_ls->AddVectorValue(*cc, -d * fixedvalue, 1);
          }
        }
      // Clear that row and column in master matrix
      for( LinearSystemWrapper::ColumnArray::iterator cc = cols.begin(); cc != cols.end(); cc++ )
        {
        this->m_ls->SetMatrixValue(fdof, *cc, 0.0, matrix);
        this->m_ls->SetMatrixValue(*cc, fdof, 0.0, matrix); // this is a
                                                            // symetric matrix
        }
      this->m_ls->SetMatrixValue(fdof, fdof, 1.0, matrix); // Set the diagonal
                                                           // element to one

      // skip to next load in an array
      continue;
      }
    } // end for LoadArray::iterator l
}

template <unsigned int VDimension>
void
Solver<VDimension>
::InitializeInterpolationGrid(const InterpolationGridSizeType & size,
                              const InterpolationGridPointType & bb1,
                              const InterpolationGridPointType & bb2)
{
  // Discard any old image object an create a new one
  m_InterpolationGrid = InterpolationGridType::New();

  // Set the interpolation grid (image) size, origin and spacing
  // from the given vectors, so that physical point of v1 is (0,0,0) and
  // phisical point v2 is (size[0],size[1],size[2]).
  InterpolationGridSizeType image_size;
  image_size.Fill(1);
  for( unsigned int i = 0; i < FEMDimension; i++ )
    {
    image_size[i] = size[i];
    }

  InterpolationGridPointType image_origin;
  image_origin.Fill(0.0);
  for( unsigned int i = 0; i < FEMDimension; i++ )
    {
    image_origin[i] = bb1[i];
    }

  InterpolationGridSpacingType image_spacing;
  image_origin.Fill(1.0);
  for( unsigned int i = 0; i < FEMDimension; i++ )
    {
    image_spacing[i] = ( bb2[i] - bb1[i] ) / ( image_size[i] - 1 );
    }

  // All regions are the same
  m_InterpolationGrid->SetRegions(image_size);
  m_InterpolationGrid->Allocate();

  // Set origin and spacing
  m_InterpolationGrid->SetOrigin(image_origin);
  m_InterpolationGrid->SetSpacing(image_spacing);

  // Initialize all pointers in interpolation grid image to 0
  m_InterpolationGrid->FillBuffer(0);

  FillInterpolationGrid();
}

template <unsigned int VDimension>
void
Solver<VDimension>
::FillInterpolationGrid( )
{
  VectorType v1, v2;

  InterpolationGridSizeType imageSize = m_InterpolationGrid->GetBufferedRegion().GetSize();

  // Fill the interpolation grid with proper pointers to elements
  unsigned int numberOfElements = m_FEMObject->GetNumberOfElements();
  for( unsigned int index = 0; index < numberOfElements; index++ )
    {
    Element::Pointer e = m_FEMObject->GetElement( index );
    // Get square boundary box of an element
    v1 = e->GetNodeCoordinates(0);      // lower left corner
    v2 = v1;                            // upper right corner

    const unsigned int NumberOfDimensions = e->GetNumberOfSpatialDimensions();
    for( unsigned int n = 1; n < e->GetNumberOfNodes(); n++ )
      {
      const VectorType & v = e->GetNodeCoordinates(n);
      for( unsigned int d = 0; d < NumberOfDimensions; d++ )
        {
        if( v[d] < v1[d] )
          {
          v1[d] = v[d];
          }
        if( v[d] > v2[d] )
          {
          v2[d] = v[d];
          }
        }
      }

    // Convert boundary box corner points into discrete image indexes.
    InterpolationGridIndexType vi1, vi2;

    Point<Float, FEMDimension> vp1, vp2, pt;
    for( unsigned int i = 0; i < FEMDimension; i++ )
      {
      vp1[i] = v1[i];
      vp2[i] = v2[i];
      }

    // Obtain the Index of BB corner and check whether it is within image.
    bool validLowerBound = m_InterpolationGrid->TransformPhysicalPointToIndex(vp1, vi1);
    bool validUpperBound = m_InterpolationGrid->TransformPhysicalPointToIndex(vp2, vi2);
    if( !validLowerBound && !validUpperBound )
      {
      continue;
      }

    // Adjust the Lower Bound if required
    if (!validLowerBound)
      {
      for( unsigned int i = 0; i < FEMDimension; i++ )
        {
        if ( vi1[i] < 0 )
          {
          vi1[i] = 0;
          }
        }
      }

    // Adjust the Upper Bound if required
    if (!validUpperBound)
      {
      for( unsigned int i = 0; i < FEMDimension; i++ )
        {
        if ( vi2[i] >= static_cast<int>(imageSize[i]) )
          {
          vi2[i] = static_cast<int>( imageSize[i] ) - 1;
          }
        }
      }

    InterpolationGridSizeType region_size;
    for( unsigned int i = 0; i < FEMDimension; i++ )
      {
      region_size[i] = vi2[i] - vi1[i] + 1;
      }
    InterpolationGridRegionType region(vi1, region_size);

    // Initialize the iterator that will step over all grid points within
    // element boundary box.
    ImageRegionIterator<InterpolationGridType> iter(m_InterpolationGrid, region);

    //
    // Update the element pointers in the points defined within the region.
    //
    VectorType global_point(NumberOfDimensions); // Point in the image as a
                                                 // vector.
    VectorType local_point(NumberOfDimensions);  // Same point in local element
                                                 // coordinate system
    // Step over all points within the region
    for( iter.GoToBegin(); !iter.IsAtEnd(); ++iter )
      {
      // Note: Iteratior is guarantied to be within image, since the
      //       elements with BB outside are skipped before.
      m_InterpolationGrid->TransformIndexToPhysicalPoint(iter.GetIndex(), pt);
      for( unsigned int d = 0; d < NumberOfDimensions; d++ )
        {
        global_point[d] = pt[d];
        }

      // If the point is within the element, we update the pointer at
      // this point in the interpolation grid image.
      if( e->GetLocalFromGlobalCoordinates(global_point, local_point) )
        {
        iter.Set( e.GetPointer() );
        }
      } // next point in region
    }   // next element
}

template <unsigned int VDimension>
void
Solver<VDimension>
::InitializeInterpolationGrid(const InterpolationGridRegionType& region,
                              const InterpolationGridPointType& origin,
                              const InterpolationGridSpacingType& spacing,
                              const InterpolationGridDirectionType& direction)
{
  InterpolationGridSizeType size = region.GetSize();
  for( unsigned int i = 0; i < FEMDimension; i++ )
    {
    if( size[i] == 0 )
      {
      itkExceptionMacro("Size must be specified.");
      }
    }

  m_InterpolationGrid = InterpolationGridType::New();
  m_InterpolationGrid->SetOrigin( origin );
  m_InterpolationGrid->SetSpacing( spacing );
  m_InterpolationGrid->SetDirection( direction );
  m_InterpolationGrid->SetRegions( region );
  m_InterpolationGrid->Allocate();

   // Initialize all pointers in interpolation grid image to 0
  m_InterpolationGrid->FillBuffer(ITK_NULLPTR);

  FillInterpolationGrid();
}

template <unsigned int VDimension>
const Element *
Solver<VDimension>
::GetElementAtPoint(const VectorType & pt) const
{
  // Add zeros to the end of physical point if necesarry
  Point<Float, FEMDimension> pp;
  for( unsigned int i = 0; i < FEMDimension; i++ )
    {
    if( i < pt.size() )
      {
      pp[i] = pt[i];
      }
    else
      {
      pp[i] = 0.0;
      }
    }

  InterpolationGridIndexType index;

  // Return value only if given point is within the interpolation grid
  if( m_InterpolationGrid->TransformPhysicalPointToIndex(pp, index) )
    {
    return m_InterpolationGrid->GetPixel(index);
    }
  else
    {
    // Return 0, if outside the grid.
    return ITK_NULLPTR;
    }
}

} // end namespace itk
} // end namespace fem
#endif // itkFEMSolver_hxx