/usr/include/ITK-4.9/itkGPUGradientNDAnisotropicDiffusionFunction.h is in libinsighttoolkit4-dev 4.9.0-4ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 | /*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkGPUGradientNDAnisotropicDiffusionFunction_h
#define itkGPUGradientNDAnisotropicDiffusionFunction_h
#include "itkGPUScalarAnisotropicDiffusionFunction.h"
#include "itkNeighborhoodAlgorithm.h"
#include "itkNeighborhoodInnerProduct.h"
#include "itkDerivativeOperator.h"
namespace itk
{
/** \class GPUGradientNDAnisotropicDiffusionFunction
*
* This class implements an N-dimensional version of the classic Perona-Malik
* anisotropic diffusion equation for scalar-valued images on the GPU. See
* itkAnisotropicDiffusionFunction for an overview of the anisotropic diffusion
* framework and equation.
*
* \par
* The conductance term for this implementation is chosen as a function of the
* gradient magnitude of the image at each point, reducing the strength of
* diffusion at edge pixels.
*
* \f[C(\mathbf{x}) = e^{-(\frac{\parallel \nabla U(\mathbf{x}) \parallel}{K})^2}\f].
*
* \par
* The numerical implementation of this equation is similar to that described
* in the Perona-Malik paper below, but uses a more robust technique
* for gradient magnitude estimation and has been generalized to N-dimensions.
*
* \par References
* Pietro Perona and Jalhandra Malik, ``Scale-space and edge detection using
* anisotropic diffusion,'' IEEE Transactions on Pattern Analysis Machine
* Intelligence, vol. 12, pp. 629-639, 1990.
*
* \ingroup ITKGPUAnisotropicSmoothing
*/
/** Create a helper GPU Kernel class for GPUGradientNDAnisotropicDiffusionFunction */
itkGPUKernelClassMacro(GPUGradientNDAnisotropicDiffusionFunctionKernel);
template< typename TImage >
class GPUGradientNDAnisotropicDiffusionFunction :
public GPUScalarAnisotropicDiffusionFunction< TImage >
{
public:
/** Standard class typedefs. */
typedef GPUGradientNDAnisotropicDiffusionFunction Self;
typedef GPUScalarAnisotropicDiffusionFunction< TImage > Superclass;
typedef SmartPointer< Self > Pointer;
typedef SmartPointer< const Self > ConstPointer;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** Run-time type information (and related methods) */
itkTypeMacro(GPUGradientNDAnisotropicDiffusionFunction,
GPUScalarAnisotropicDiffusionFunction);
/** Inherit some parameters from the superclass type. */
typedef typename Superclass::ImageType ImageType;
typedef typename Superclass::PixelType PixelType;
typedef typename Superclass::PixelRealType PixelRealType;
typedef typename Superclass::TimeStepType TimeStepType;
typedef typename Superclass::RadiusType RadiusType;
typedef typename Superclass::NeighborhoodType NeighborhoodType;
typedef typename Superclass::FloatOffsetType FloatOffsetType;
typedef SizeValueType NeighborhoodSizeValueType;
/** Inherit some parameters from the superclass type. */
itkStaticConstMacro(ImageDimension, unsigned int, Superclass::ImageDimension);
/** Get OpenCL Kernel source as a string, creates a GetOpenCLSource method */
itkGetOpenCLSourceFromKernelMacro(GPUGradientNDAnisotropicDiffusionFunctionKernel);
/** Compute the equation value. */
virtual void GPUComputeUpdate( const typename TImage::Pointer output, typename TImage::Pointer buffer,
void *globalData ) ITK_OVERRIDE;
/** This method is called prior to each iteration of the solver. */
virtual void InitializeIteration() ITK_OVERRIDE
{
m_K = static_cast< PixelType >( this->GetAverageGradientMagnitudeSquared()
* this->GetConductanceParameter() * this->GetConductanceParameter() * -2.0f );
}
protected:
GPUGradientNDAnisotropicDiffusionFunction();
~GPUGradientNDAnisotropicDiffusionFunction() {
}
/** Inner product function. */
NeighborhoodInnerProduct< ImageType > m_InnerProduct;
/** Slices for the ND neighborhood. */
std::slice x_slice[ImageDimension];
std::slice xa_slice[ImageDimension][ImageDimension];
std::slice xd_slice[ImageDimension][ImageDimension];
/** Derivative operator. */
DerivativeOperator< PixelType, itkGetStaticConstMacro(ImageDimension) > dx_op;
/** Modified global average gradient magnitude term. */
PixelType m_K;
NeighborhoodSizeValueType m_Center;
NeighborhoodSizeValueType m_Stride[ImageDimension];
static double m_MIN_NORM;
private:
GPUGradientNDAnisotropicDiffusionFunction(const Self &) ITK_DELETE_FUNCTION;
void operator=(const Self &) ITK_DELETE_FUNCTION;
};
} // end namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
#include "itkGPUGradientNDAnisotropicDiffusionFunction.hxx"
#endif
#endif
|