This file is indexed.

/usr/include/ITK-4.9/itkGaussianDerivativeOperator.h is in libinsighttoolkit4-dev 4.9.0-4ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkGaussianDerivativeOperator_h
#define itkGaussianDerivativeOperator_h

#include "itkGaussianOperator.h"
#include "itkDerivativeOperator.h"

#include <algorithm>

namespace itk
{
/**
 * \class GaussianDerivativeOperator
 * \brief A NeighborhoodOperator whose coefficients are a one dimensional,
 * discrete derivative Gaussian kernel.
 *
 * GaussianDerivativeOperator can be used to calculate Gaussian derivatives
 * by taking its inner product with to a Neighborhood
 * (NeighborhooIterator) that is swept across an image region.
 * It is a directional operator.  N successive applications
 * oriented along each dimensional direction will calculate separable,
 * efficient, N-D Gaussian derivatives of an image region.
 *
 * GaussianDerivativeOperator takes three parameters:
 *
 * (1) The floating-point variance of the desired Gaussian function.
 *
 * (2) The order of the derivative to be calculated (zero order means
 *     it performs only smoothing as a standard itk::GaussianOperator)
 *
 * (3) The "maximum error" allowed in the discrete Gaussian
 * function.  "Maximum errror" is defined as the difference between the area
 * under the discrete Gaussian curve and the area under the continuous
 * Gaussian. Maximum error affects the Gaussian operator size. Care should
 * be taken not to make this value too small relative to the variance
 * lest the operator size become unreasonably large.
 *
 * References:
 * The Gaussian kernel contained in this operator was described
 * by Tony Lindeberg  (Discrete Scale-Space Theory and the Scale-Space
 * Primal Sketch. Dissertation. Royal Institute of Technology, Stockholm,
 * Sweden. May 1991.).
 *
 * \author Ivan Macia, VICOMTech, Spain, http://www.vicomtech.es
 *
 * This implementation is derived from the Insight Journal paper:
 * http://hdl.handle.net/1926/1290
 *
 * \sa GaussianOperator
 * \sa NeighborhoodOperator
 * \sa NeighborhoodIterator
 * \sa Neighborhood
 *
 * \ingroup Operators
 * \ingroup ITKReview
 *
 * \wiki
 * \wikiexample{Operators/GaussianDerivativeOperator,Create a Gaussian derivative kernel}
 * \endwiki
 */
template< typename TPixel, unsigned int VDimension = 2,
          typename TAllocator = NeighborhoodAllocator< TPixel > >
class GaussianDerivativeOperator :
  public NeighborhoodOperator< TPixel, VDimension, TAllocator >
{
public:
  /** Standard class typedefs. */
  typedef GaussianDerivativeOperator                             Self;
  typedef NeighborhoodOperator< TPixel, VDimension, TAllocator > Superclass;

  /** Neighborhood operator types. */
  typedef GaussianOperator< TPixel, VDimension, TAllocator >   GaussianOperatorType;
  typedef DerivativeOperator< TPixel, VDimension, TAllocator > DerivativeOperatorType;

  /** Constructor. */
  GaussianDerivativeOperator();

  /** Copy constructor */
  GaussianDerivativeOperator(const Self & other);

  /** Assignment operator */
  Self & operator=(const Self & other);


  /** Set/Get the flag for calculating scale-space normalized
   * derivatives.
   *
   * Normalized derivatives are obtained multiplying by the scale
   * parameter $t^1/order$. This use useful for scale-space selection
   * algorithms such as blob detection. The scaling results in the
   * value of the derivatives being independent of the size of an
   * object. */
  void SetNormalizeAcrossScale(bool flag) { m_NormalizeAcrossScale = flag; }
  bool GetNormalizeAcrossScale() const { return m_NormalizeAcrossScale; }
  itkBooleanMacro(NormalizeAcrossScale);

  /** Set/Get the variance of the Gaussian kernel.
   *
   */
  void SetVariance(const double variance) { m_Variance = variance; }
  double GetVariance() const { return m_Variance; }

  /** Set/Get the spacing for the direction of this kernel. */
  void SetSpacing(const double spacing) { m_Spacing = spacing; }
  double GetSpacing() const { return m_Spacing; }

  /** Set/Get the desired maximum error of the gaussian approximation.  Maximum
   * error is the difference between the area under the discrete Gaussian curve
   * and the area under the continuous Gaussian. Maximum error affects the
   * Gaussian operator size. The value is clamped between 0.00001 and 0.99999. */
  void SetMaximumError(const double maxerror)
  {
    const double Min = 0.00001;
    const double Max = 1.0 - Min;

    m_MaximumError = std::max( Min, std::min( Max, maxerror ) );
  }
  double GetMaximumError() { return m_MaximumError; }

  /** Sets/Get a limit for growth of the kernel.  Small maximum error values with
   *  large variances will yield very large kernel sizes.  This value can be
   *  used to truncate a kernel in such instances.  A warning will be given on
   *  truncation of the kernel. */
  void SetMaximumKernelWidth(unsigned int n)
  {
    m_MaximumKernelWidth = n;
  }

  /** Sets/Get the order of the derivative. */
  void SetOrder(const unsigned int order) { m_Order = order;}
  unsigned int GetOrder() const { return m_Order; }

  /** Prints member variables */
  virtual void PrintSelf(std::ostream & os, Indent i) const;

protected:

  typedef typename Superclass::CoefficientVector CoefficientVector;

  /** Returns the value of the modified Bessel function I0(x) at a point x >= 0.
    */
  static double ModifiedBesselI0(double);

  /** Returns the value of the modified Bessel function I1(x) at a point x,
   * x real.  */
  static double ModifiedBesselI1(double);

  /** Returns the value of the modified Bessel function Ik(x) at a point x>=0,
   * where k>=2. */
  static double ModifiedBesselI(int, double);

  /** Calculates operator coefficients. */
  CoefficientVector GenerateCoefficients();

  /** Arranges coefficients spatially in the memory buffer. */
  void Fill(const CoefficientVector & coeff)
  { this->FillCenteredDirectional(coeff); }

private:

  /* methods for generations of the coeeficients for a gaussian
   * operator of 0-order respecting the remaining parameters */
  CoefficientVector GenerateGaussianCoefficients() const;

  /** For compatibility with itkWarningMacro */
  const char * GetNameOfClass() const
  {
    return "itkGaussianDerivativeOperator";
  }

  /** Normalize derivatives across scale space */
  bool m_NormalizeAcrossScale;

  /** Desired variance of the discrete Gaussian function. */
  double m_Variance;

  /** Difference between the areas under the curves of the continuous and
   * discrete Gaussian functions. */
  double m_MaximumError;

  /** Maximum kernel size allowed.  This value is used to truncate a kernel
   *  that has grown too large.  A warning is given when the specified maximum
   *  error causes the kernel to exceed this size. */
  unsigned int m_MaximumKernelWidth;

  /** Order of the derivative. */
  unsigned int m_Order;

  /** Spacing in the direction of this kernel. */
  double m_Spacing;
};
} // namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#include "itkGaussianDerivativeOperator.hxx"
#endif

#endif