This file is indexed.

/usr/include/ITK-4.9/itkGaussianDerivativeOperator.hxx is in libinsighttoolkit4-dev 4.9.0-4ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkGaussianDerivativeOperator_hxx
#define itkGaussianDerivativeOperator_hxx

#include "itkGaussianDerivativeOperator.h"
#include "itkOutputWindow.h"
#include "itkMacro.h"
#include <numeric>

namespace itk
{

/* Constructor. */
template< typename TPixel, unsigned int VDimension, typename TAllocator >
GaussianDerivativeOperator< TPixel, VDimension, TAllocator >
::GaussianDerivativeOperator()
{
  m_Order = 1;
  m_Variance = 1.0;
  m_Spacing = 1.0;
  m_MaximumError = 0.005;
  m_MaximumKernelWidth = 30;
  m_NormalizeAcrossScale = true;
}

/* Copy constructor */
template< typename TPixel, unsigned int VDimension, typename TAllocator >
GaussianDerivativeOperator< TPixel, VDimension, TAllocator >
::GaussianDerivativeOperator(const Self & other)
  : NeighborhoodOperator< TPixel, VDimension, TAllocator >(other)
{
  m_NormalizeAcrossScale = other.m_NormalizeAcrossScale;
  m_Spacing = other.m_Spacing;
  m_Order = other.m_Order;
  m_Variance = other.m_Variance;
  m_MaximumError = other.m_MaximumError;
  m_MaximumKernelWidth = other.m_MaximumKernelWidth;
}

/** Assignment operator */
template< typename TPixel, unsigned int VDimension, typename TAllocator >
GaussianDerivativeOperator< TPixel, VDimension, TAllocator > &
GaussianDerivativeOperator< TPixel, VDimension, TAllocator >
::operator=(const Self & other)
{
  if(this != &other)
    {
    Superclass::operator=(other);
    m_NormalizeAcrossScale = other.m_NormalizeAcrossScale;
    m_Spacing = other.m_Spacing;
    m_Order = other.m_Order;
    m_Variance = other.m_Variance;
    m_MaximumError = other.m_MaximumError;
    m_MaximumKernelWidth = other.m_MaximumKernelWidth;
    }
  return *this;
}

template< typename TPixel, unsigned int VDimension, typename TAllocator >
typename GaussianDerivativeOperator< TPixel, VDimension, TAllocator >
::CoefficientVector
GaussianDerivativeOperator< TPixel, VDimension, TAllocator >
::GenerateCoefficients()
{

  // compute gaussian kernel of 0-order
  CoefficientVector coeff = this->GenerateGaussianCoefficients();

  if ( m_Order == 0 )
    {
    return coeff;
    }


  // Calculate scale-space normalization factor for derivatives
  double norm = (m_NormalizeAcrossScale && m_Order ? std::pow(m_Variance, m_Order / 2.0) : 1.0 );

  // additional normalization for spacing
  norm /= std::pow( m_Spacing, static_cast< int >( m_Order ) );

  DerivativeOperatorType derivOp;
  derivOp.SetDirection( this->GetDirection() );
  derivOp.SetOrder( m_Order );
  derivOp.CreateDirectional();

  // The input gaussian kernel needs to be padded with a clamped
  // boundary condition. If N is the radius of the derivative
  // operator, then the output kernel needs to be padded by N-1. For
  // these values to be computed the input kernel needs to be padded
  // by 2N-1 on both sides.
  unsigned int N = ( derivOp.Size() - 1 ) / 2;

  // copy the gaussian operator adding clamped boundary condition
  CoefficientVector paddedCoeff( coeff.size() + 4*N - 2);

  // copy the whole gaussuan operator in coeff to paddedCoef
  // starting after the padding
  std::copy( coeff.begin(), coeff.end(), paddedCoeff.begin() + 2*N - 1);

  // padd paddedCoeff with 2*N-1 number of boundary conditions
  std::fill( paddedCoeff.begin(),  paddedCoeff.begin() + 2*N, coeff.front() );
  std::fill( paddedCoeff.rbegin(), paddedCoeff.rbegin() + 2*N, coeff.back() );

  // clear for output kernel/coeffs
  coeff = CoefficientVector();

  // Now perform convolution between derivative operators and padded gaussian
  for ( unsigned int i = N; i < paddedCoeff.size() - N; ++i )
    {
    double conv = 0.0;

    // current index in derivative op
    for ( unsigned int j = 0; j < derivOp.Size(); ++j )
      {
      unsigned int k = i + j - derivOp.Size() / 2;
      conv += paddedCoeff[k] * derivOp[derivOp.Size() - 1 - j];
      }

    // normalize for scale-space and spacing
    coeff.push_back(norm * conv);
    }

  return coeff;
}

template< typename TPixel, unsigned int VDimension, typename TAllocator >
typename GaussianDerivativeOperator< TPixel, VDimension, TAllocator >::CoefficientVector
GaussianDerivativeOperator< TPixel, VDimension, TAllocator >
::GenerateGaussianCoefficients() const
{

  CoefficientVector coeff;

  // Use image spacing to modify variance
  const double pixelVariance = m_Variance / ( m_Spacing * m_Spacing );

  // Now create coefficients as if they were zero order coeffs
  const double et  = std::exp(-pixelVariance);
  const double cap = 1.0 - m_MaximumError;
  double       sum       = 0.0;

  // Create the kernel coefficients as a std::vector
  coeff.push_back( et * ModifiedBesselI0(pixelVariance) );
  sum += coeff[0];
  coeff.push_back( et * ModifiedBesselI1(pixelVariance) );
  sum += coeff[1] * 2.0;

  for ( int i = 2; sum < cap; i++ )
    {
    coeff.push_back( et * ModifiedBesselI(i, pixelVariance) );
    sum += coeff[i] * 2.0;
    if ( coeff[i] < sum*NumericTraits<double>::epsilon() )
      {
      // if the coeff is less then this value then the value of cap
      // will not change, and it's will not contribute to the operator
      itkWarningMacro( "Kernel failed to accumulate to approximately one with current remainder "
                       << cap-sum << " and current coefficient " << coeff[i] << "." );

      break;
      }
    if ( coeff.size() > m_MaximumKernelWidth )
      {
      itkWarningMacro("Kernel size has exceeded the specified maximum width of "
                      << m_MaximumKernelWidth << " and has been truncated to "
                      << static_cast< unsigned long >( coeff.size() ) << " elements.  You can raise "
                      "the maximum width using the SetMaximumKernelWidth method.");
      break;
      }
    }

  // re-accumulate from smallest number to largest for maximum precision
  sum = std::accumulate( coeff.rbegin(), coeff.rend() - 1, 0.0 );
  sum *= 2.0;
  sum += coeff[0]; // the first is only needed once

  // Normalize the coefficients so they sum one
  for ( typename CoefficientVector::iterator it = coeff.begin(); it != coeff.end(); ++it )
    {
    *it /= sum;
    }

  // Make symmetric
  size_t s = coeff.size() - 1;
  coeff.insert(coeff.begin(), s, 0);
  std::copy( coeff.rbegin(), coeff.rbegin() + s, coeff.begin() );

  return coeff;
}

template< typename TPixel, unsigned int VDimension, typename TAllocator >
double
GaussianDerivativeOperator< TPixel, VDimension, TAllocator >
::ModifiedBesselI0(double y)
{
  double d, accumulator;
  double m;

  if ( ( d = std::fabs(y) ) < 3.75 )
    {
    m = y / 3.75;
    m *= m;
    accumulator = 1.0 + m * ( 3.5156229 + m * ( 3.0899424 + m * ( 1.2067492
                                                                  + m
                                                                  * ( 0.2659732 + m * ( 0.360768e-1 + m * 0.45813e-2 ) ) ) ) );
    }
  else
    {
    m = 3.75 / d;
    accumulator = ( std::exp(d) / std::sqrt(d) ) * ( 0.39894228 + m * ( 0.1328592e-1
                                                                      + m
                                                                      * ( 0.225319e-2 + m
                                                                          * ( -0.157565e-2 + m * ( 0.916281e-2
                                                                                                   +
                                                                                                   m
                                                                                                   * ( -0.2057706e-1
                                                                                                       + m *
                                                                                                       ( 0.2635537e-1 +
                                                                                                         m *
                                                                                                         ( -0.1647633e-1
       +
       m
       *
       0.392377e-2 ) ) ) ) ) ) ) );
    }
  return accumulator;
}

template< typename TPixel, unsigned int VDimension, typename TAllocator >
double
GaussianDerivativeOperator< TPixel, VDimension, TAllocator >
::ModifiedBesselI1(double y)
{
  double d, accumulator;
  double m;

  if ( ( d = std::fabs(y) ) < 3.75 )
    {
    m = y / 3.75;
    m *= m;
    accumulator = d * ( 0.5 + m * ( 0.87890594 + m * ( 0.51498869 + m * ( 0.15084934
                                                                          + m
                                                                          * ( 0.2658733e-1 + m
                                                                              * ( 0.301532e-2 + m * 0.32411e-3 ) ) ) ) ) );
    }
  else
    {
    m = 3.75 / d;
    accumulator = 0.2282967e-1 + m * ( -0.2895312e-1 + m * ( 0.1787654e-1
                                                             - m * 0.420059e-2 ) );
    accumulator = 0.39894228 + m * ( -0.3988024e-1 + m * ( -0.362018e-2
                                                           + m * ( 0.163801e-2 + m * ( -0.1031555e-1 + m * accumulator ) ) ) );

    accumulator *= ( std::exp(d) / std::sqrt(d) );
    }

  if ( y < 0.0 ) { return -accumulator; }
  else { return accumulator; }
}

template< typename TPixel, unsigned int VDimension, typename TAllocator >
double
GaussianDerivativeOperator< TPixel, VDimension, TAllocator >
::ModifiedBesselI(int n, double y)
{
  const double DIGITS = 10.0;
  int          j;
  double       qim, qi, qip, toy;
  double       accumulator;

  if ( n < 2 )
    {
    throw ExceptionObject(__FILE__, __LINE__, "Order of modified bessel is > 2.", ITK_LOCATION);  //
                                                                                                  // placeholder
    }
  if ( y == 0.0 ) { return 0.0; }
  else
    {
    toy = 2.0 / std::fabs(y);
    qip = accumulator = 0.0;
    qi = 1.0;
    for ( j = 2 * ( n + (int)(DIGITS*std::sqrt((double)n) ) ); j > 0; j-- )
      {
      qim = qip + j * toy * qi;
      qip = qi;
      qi = qim;
      if ( std::fabs(qi) > 1.0e10 )
        {
        accumulator *= 1.0e-10;
        qi *= 1.0e-10;
        qip *= 1.0e-10;
        }
      if ( j == n ) { accumulator = qip; }
      }
    accumulator *= ModifiedBesselI0(y) / qi;
    if ( y < 0.0 && ( n & 1 ) ) { return -accumulator; }
    else { return accumulator; }
    }
}

/* Prints some debugging information. */
template< typename TPixel, unsigned int VDimension, typename TAllocator >
void
GaussianDerivativeOperator< TPixel, VDimension, TAllocator >
::PrintSelf(std::ostream & os, Indent i) const
{
  os << i << "GaussianDerivativeOperator { this=" << this
     << ", m_NormalizeAcrossScale = " << m_NormalizeAcrossScale
     << ", m_Order = " << m_Order
     << ", m_Spacing = " << m_Spacing
     << ", m_Variance = " << m_Variance
     << ", m_MaximumError = " << m_MaximumError
     << ", m_MaximumKernelWidth = " << m_MaximumKernelWidth
     << "} "  << std::endl;
  Superclass::PrintSelf( os, i.GetNextIndent() );
}

} // end namespace itk

#endif