/usr/include/ITK-4.9/itkGaussianImageSource.hxx is in libinsighttoolkit4-dev 4.9.0-4ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 | /*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkGaussianImageSource_hxx
#define itkGaussianImageSource_hxx
#include "itkGaussianImageSource.h"
#include "itkGaussianSpatialFunction.h"
#include "itkImageRegionIterator.h"
#include "itkProgressReporter.h"
#include "itkObjectFactory.h"
namespace itk
{
template< typename TOutputImage >
GaussianImageSource< TOutputImage >
::GaussianImageSource()
{
// Gaussian parameters, defined so that the gaussian
// is centered in the default image
m_Mean.Fill(32.0);
m_Sigma.Fill(16.0);
m_Scale = 255.0;
m_Normalized = false;
}
template< typename TOutputImage >
void
GaussianImageSource< TOutputImage >
::PrintSelf(std::ostream & os, Indent indent) const
{
Superclass::PrintSelf(os, indent);
os << indent << "Gaussian sigma: [";
for ( unsigned int ii = 0; ii < NDimensions; ++ii )
{
os << m_Sigma[ii];
if( ii != NDimensions - 1 )
{
os << ", ";
}
}
os << "]" << std::endl;
os << indent << "Gaussian mean: [";
for ( unsigned int ii = 0; ii < NDimensions; ++ii )
{
os << m_Mean[ii];
if( ii != NDimensions - 1 )
{
os << ", ";
}
}
os << "]" << std::endl;
os << indent << "Gaussian scale: " << m_Scale << std::endl;
os << indent << "Normalized Gaussian?: " << m_Normalized << std::endl;
}
template< typename TOutputImage >
void
GaussianImageSource< TOutputImage >
::SetParameters(const ParametersType & parameters)
{
ArrayType sigma;
ArrayType mean;
for ( unsigned int i = 0; i < ArrayType::Length; ++i )
{
sigma[i] = parameters[i];
mean[i] = parameters[i + ArrayType::Length];
}
this->SetSigma( sigma );
this->SetMean( mean );
const double scale = parameters[2*ArrayType::Length];
this->SetScale( scale );
}
template< typename TOutputImage >
typename GaussianImageSource< TOutputImage >::ParametersType
GaussianImageSource< TOutputImage >
::GetParameters() const
{
ParametersType parameters( 2*ArrayType::Length + 1 );
for ( unsigned int i = 0; i < ArrayType::Length; ++i )
{
parameters[i] = m_Sigma[i];
parameters[i + ArrayType::Length] = m_Mean[i];
}
parameters[2*ArrayType::Length] = m_Scale;
return parameters;
}
template< typename TOutputImage >
unsigned int
GaussianImageSource< TOutputImage >
::GetNumberOfParameters() const
{
return 2*ArrayType::Length + 1;
}
template< typename TOutputImage >
void
GaussianImageSource< TOutputImage >
::GenerateData()
{
TOutputImage * outputPtr = this->GetOutput();
// allocate the output buffer
outputPtr->SetBufferedRegion( outputPtr->GetRequestedRegion() );
outputPtr->Allocate();
// Create and initialize a new gaussian function
typedef GaussianSpatialFunction< double, NDimensions > FunctionType;
typename FunctionType::Pointer gaussian = FunctionType::New();
gaussian->SetSigma(m_Sigma);
gaussian->SetMean(m_Mean);
gaussian->SetScale(m_Scale);
gaussian->SetNormalized(m_Normalized);
// Create an iterator that will walk the output region
typedef ImageRegionIterator< TOutputImage > OutputIterator;
OutputIterator outIt = OutputIterator( outputPtr,
outputPtr->GetRequestedRegion() );
ProgressReporter progress( this, 0,
outputPtr->GetRequestedRegion()
.GetNumberOfPixels() );
// Walk the output image, evaluating the spatial function at each pixel
outIt.GoToBegin();
while( !outIt.IsAtEnd() )
{
const typename TOutputImage::IndexType index = outIt.GetIndex();
// The position at which the function is evaluated
typename FunctionType::InputType evalPoint;
outputPtr->TransformIndexToPhysicalPoint(index, evalPoint);
const double value = gaussian->Evaluate(evalPoint);
// Set the pixel value to the function value
outIt.Set( static_cast< typename TOutputImage::PixelType >( value ));
progress.CompletedPixel();
++outIt;
}
}
} // end namespace itk
#endif
|