/usr/include/ITK-4.9/itkGeometricalQuadEdge.hxx is in libinsighttoolkit4-dev 4.9.0-4ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 | /*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkGeometricalQuadEdge_hxx
#define itkGeometricalQuadEdge_hxx
#include "itkGeometricalQuadEdge.h"
#include "vcl_limits.h"
#include <iostream>
namespace itk
{
/**
*/
template< typename TVRef, typename TFRef,
typename TPrimalData, typename TDualData, bool PrimalDual >
const typename GeometricalQuadEdge< TVRef, TFRef,
TPrimalData, TDualData, PrimalDual >::OriginRefType
GeometricalQuadEdge< TVRef, TFRef, TPrimalData, TDualData, PrimalDual >::m_NoPoint =
std::numeric_limits< OriginRefType >::max();
/**
* Constructor
*/
template< typename TVRef, typename TFRef,
typename TPrimalData, typename TDualData, bool PrimalDual >
GeometricalQuadEdge< TVRef, TFRef, TPrimalData, TDualData, PrimalDual >
::GeometricalQuadEdge() :
m_Origin(m_NoPoint),
m_Data(),
m_DataSet(false),
m_LineCellIdent(0)
{
}
/**
*/
template< typename TVRef, typename TFRef,
typename TPrimalData, typename TDualData, bool PrimalDual >
bool GeometricalQuadEdge< TVRef, TFRef, TPrimalData, TDualData, PrimalDual >::SetLnextRingWithSameLeftFace(
const DualOriginRefType faceGeom,
int maxSize)
{
#ifndef NDEBUG
if ( !this->IsLnextSharingSameFace(maxSize) )
{
itkQEDebugMacro("Lnext() edges do NOT share the same Left().");
return ( false );
}
#endif
IteratorGeom it = this->BeginGeomLnext();
while ( maxSize && ( it != this->EndGeomLnext() ) )
{
it.Value()->SetLeft(faceGeom);
it++;
maxSize--;
}
return ( true );
}
/**
* \brief Check wether the Lnext() ring of "this" edge is exactly of
* size three AND if those three edges all share the same Left().
* @return Returns true when the Lnext() ring is the one of a triangle.
* Returns false otherwise.
*/
template< typename TVRef, typename TFRef,
typename TPrimalData, typename TDualData, bool PrimalDual >
bool GeometricalQuadEdge< TVRef, TFRef, TPrimalData, TDualData, PrimalDual >::IsLnextOfTriangle()
{
return ( this->IsLnextSharingSameFace(3) );
}
/**
* \brief Check wether the incoming argument is in the Onext() ring
* of "this" edge or not.
* @param b The edge to test.
* @return Returns true when "this" edge and the incoming argument are
* in the same Onext() ring. Returns false otherwise.
*/
template< typename TVRef, typename TFRef,
typename TPrimalData, typename TDualData, bool PrimalDual >
bool GeometricalQuadEdge< TVRef, TFRef, TPrimalData, TDualData, PrimalDual >::IsInOnextRing(Self *b)
{
for ( IteratorGeom it = this->BeginGeomOnext();
it != this->EndGeomOnext();
it++ )
{
if ( b == it.Value() )
{
return true;
}
}
return false;
}
/**
* \brief Check wether the incoming argument is in the Lnext() ring
* of "this" edge or not.
* @param b The edge to test.
* @return Returns true when "this" edge and the incoming argument are
* in the same Lnext() ring. Returns false otherwise.
*/
template< typename TVRef, typename TFRef,
typename TPrimalData, typename TDualData, bool PrimalDual >
bool GeometricalQuadEdge< TVRef, TFRef, TPrimalData, TDualData, PrimalDual >::IsInLnextRing(Self *b)
{
for ( IteratorGeom it = this->BeginGeomLnext();
it != this->EndGeomLnext();
it++ )
{
if ( b == it.Value() )
{
return true;
}
}
return false;
}
/**
* \brief Check wether edge's Origin is internal to the mesh (as opposed
* to being on the boundary) by looking if all the edges in the
* Onext() ring have a face set on both their Left() and Right()
* side.
*/
template< typename TVRef, typename TFRef,
typename TPrimalData, typename TDualData, bool PrimalDual >
bool
GeometricalQuadEdge< TVRef, TFRef, TPrimalData, TDualData, PrimalDual >
::IsOriginInternal() const
{
ConstIteratorGeom it = this->BeginGeomOnext();
while ( it != this->EndGeomOnext() )
{
typedef typename ConstIteratorGeom::QuadEdgeType QuadEdgeType;
const QuadEdgeType *value = it.Value();
if ( !value->IsInternal() ) { return false; }
++it;
}
return true;
}
/**
* \brief Consider the first few edges in Lnext() ring of "this" edge.
* Check wether those edges all share the same Left().
* @param maxSize Looks at most maxSize edges in the Lnext() ring.
* @return Returns true when the Lnext() ring share THE same
* Left() faces. Return false otherwise.
*/
template< typename TVRef, typename TFRef,
typename TPrimalData, typename TDualData, bool PrimalDual >
bool GeometricalQuadEdge< TVRef, TFRef, TPrimalData, TDualData, PrimalDual >::IsLnextSharingSameFace(int maxSize)
{
IteratorGeom it = this->BeginGeomLnext();
while ( maxSize && ( it != this->EndGeomLnext() ) )
{
// The condition isn't complicated: if left faces aren't set,
// continue, if just one is set return false, if both are set
// check if the face is the same
bool facesAreNotSet = !this->IsLeftSet() && !it.Value()->IsLeftSet();
bool facesAreTheSame = this->GetLeft() == it.Value()->GetLeft();
bool facesAreSet = this->IsLeftSet() && it.Value()->IsLeftSet();
//
// FIXME: This boolean expression can be simplified.
// ALEX : what about the version below ?
//
// if ( this->IsLeftSet() ) // one left set
// {
// if (it.Value()->IsLeftSet()) // two left set
// {
// if( !(this->GetLeft() == it.Value()->GetLeft()) )
// {
// return( false ); // not same face
// }
// }
// else // only one set
// {
// return( false );
// }
// }
// else // one not set
// {
// if(it.Value()->IsLeftSet()) // only one set
// {
// return( false );
// }
// }
//
if ( !( facesAreNotSet || ( facesAreSet && facesAreTheSame ) ) )
{
return ( false );
}
it++;
maxSize--;
}
if ( it != this->EndGeomLnext() )
{
// The Lnext ring is bigger than the caller expected
return ( false );
}
return ( true );
}
/**
*/
template< typename TVRef, typename TFRef,
typename TPrimalData, typename TDualData, bool PrimalDual >
typename GeometricalQuadEdge< TVRef, TFRef, TPrimalData, TDualData, PrimalDual >::Self *
GeometricalQuadEdge< TVRef, TFRef, TPrimalData, TDualData, PrimalDual >::GetNextBorderEdgeWithUnsetLeft(Self *edgeTest)
{
// Definition: an edge is said to be a boundary edge when it is adjacent to
// noface i.e. when at least one of the faces edge->GetLeft() or
// edge->GetRight() is unset. Definition: an point is said to be a boundary
// point when at least one of the edges of it's Onext() ring is a boundary
// edge.
//
// Assume "this" edge belongs to a triangulation (i.e. it belongs to a QEMesh
// which represents a 2-manifold) which possesses a boundary. Assume "this"
// edge instance is a boundary edge. Let us denote by P the point which is
// the origin of "this" edge i.e. P is this->Origin(). By definition P is a
// boundary point. Then AT LEAST two [see the note below] edges of the
// Onext() ring of P [which all have the point P as Origin()] are themselves
// boundary edges. And among those boundary edges AT LEAST one has it's
// Left() face unset. By iterating over the Onext() ring (which defines a
// local ordering on edges) this method searches for the first edge whose
// Left() face is unset AND which is encountered AFTER edgeTest.
//
// @param edgeTest When present, this edge will be considered as
// the entry edge in the Onext() ring. When absent it shall
// be defaulted to "this" edge. (see the warning below).
// @return When "this" edge is a boundary edge, return the first
// edge in "this" Onext() ring whose Left() face is unset
// AND located after edgeTest.
// When "this" edge is NOT a boundary edge the 0 is
// returned.
// @warning When the Mesh possessing "this" edge is a 2-manifold
// then result of this method is unique in the sense that
// it is independent from the edgeTest parameter.
// But when the Mesh is not 2-manifold (this state can
// happen at intermediary stages of the building process,
// or during "surgical" operations on the Mesh, and
// even though the Mesh represents a triangulation)
// the result of this method is not unique in the sense
// that the result depends on the edgeTest parameter.
// Let us illusatre this dependence by considering a
// Mesh (which is a triangulation) which is not a 2-manifold.
// Assume the point P (the origin of "this" edge i.e.
// P = this->Originv()) is TWICE on the border i.e. it
// is adjacent twice to noface. We can consider the situation
// of the following diagram, which depicts some Onext()
// ring around point P:
//
// \ / //
// \ * / //
// i3 b2 counter-clockwise //
// * \ / NO FACE Onext() order. //
// \ / //
// ----b4-----P----b1------ //
// /|\ //
// NO FACE / | \ //
// / | \ * <------ a * indicates the //
// / | \ the presence of a face //
// / | \ //
// b5 i6 i7 //
// / * | * \ //
// / | \ //
//
// On this example, and if we assume the Onext() oder is
// represented counter-clockwise, the edges are ordered as
// follows:
// b1, b2, i3, b4, b5, i6, i7
// (when arbitrarily starting at edge b1).
// We have four Boundary edges labeled b1, b2, b4, b5 and
// we have three internal edges (i.e. non boundary edges)
// labeled i3, i6 and i7.
// Depending on edgeTest, the result of this method
// will NOT return the same edge:
// - when edgeTest == b5 (or i6 or i7 or b1) then the edge
// b1 will be returned,
// - when edgeTest == b2 (or i3 or b4) then the edge
// b4 will be returned,
// Eventually, when edgeTest is absent, the result shall
// depend on the position of "this" in the Onext() ring().
//
// Be sure the Onext ring isn't already full
if ( this->IsOriginInternal() )
{
itkQEDebugMacro("Internal point.");
return ( ITK_NULLPTR );
}
// Update reference
edgeTest = ( !edgeTest ) ? this : edgeTest;
// On efficiency purposes
if ( edgeTest->IsIsolated() )
{
return ( edgeTest );
}
// Ok, no more special cases
IteratorGeom it = edgeTest->BeginGeomOnext();
IteratorGeom end = edgeTest->EndGeomOnext();
while ( it != end )
{
if ( !it.Value()->IsLeftSet() )
{
return ( it.Value() );
}
it++;
}
// No border edge found
itkQEDebugMacro("Unfound border edge.");
return ( ITK_NULLPTR );
}
/**
*/
template< typename TVRef, typename TFRef,
typename TPrimalData, typename TDualData, bool PrimalDual >
bool GeometricalQuadEdge< TVRef, TFRef, TPrimalData, TDualData, PrimalDual >::InsertAfterNextBorderEdgeWithUnsetLeft(
Self *isol,
Self *hint)
{
// When the geometry of isol is set it must match the
// one of "this" Origin(). If the geometry is not set, we assume
// that both Origin are the same, regardless their actual value.
// Note: The purpose of this test is to avoid introducing some
// incoherence in the geometry at Origin().
// The things should go this way:
// 1/ when the geometry of "this" Origin is not set, then be paranoid
// and suspect the situation is already snafu:
// 1a/ if all edges of "this" Onext ring have an unset Origin()
// (the situation is coherent), then proceed (Result=0)
// whatever the value of isol.Origin() might be.
// 1b/ if one of the edges of "this" Onext ring has an Origin() set,
// then we deduce that there is already some geometrical
// incoherence at this->Origin() and exit this method (Result=1).
// 2/ Then when we didn't exit at stage 1, consider isol.Origin():
// 2a/ when isol.Origin() is absent proceed (result=0),
// 2b/ when isol.Origin() is present and Origin == isol.OriginSet then
// proceed (result=0),
// 2c/ when isol.Origin() is present and Origin != isol.OriginSet then
// exit (result=1).
//
// Here is what is implemented:
// +-----------+----------------+--------------------------+--------+
// | OriginSet | isol.OriginSet | Origin == isol.OriginSet | Result |
// +-----------+----------------+--------------------------+--------+
// | 0 | 0 | 0 | 0 |
// | 0 | 0 | 1 | 0 |
// | 0 | 1 | 0 | 1 |
// | 0 | 1 | 1 | 1 |
// +-----------+----------------+--------------------------+--------+
// | 1 | 0 | 0 | 1 |
// | 1 | 0 | 1 | 1 |
// | 1 | 1 | 0 | 1 |
// | 1 | 1 | 1 | 0 |
// +-----------+----------------+--------------------------+--------+
//
if ( !( !( IsOriginSet() || isol->IsOriginSet() )
|| ( IsOriginSet()
&& isol->IsOriginSet()
&& ( m_Origin == isol->m_Origin ) )
)
)
{
itkQEDebugMacro("Isolated Origin() differs from this Origin.");
return ( false );
}
// Find out if this point has some room left for edge insertion:
Self *edgeAfter = this->GetNextBorderEdgeWithUnsetLeft(hint);
if ( !edgeAfter )
{
itkQEDebugMacro("This point is yet surrounded by faces.");
return ( false );
}
// Normally, an edge was found
edgeAfter->Splice(isol);
return ( true );
}
/**
*/
template< typename TVRef, typename TFRef,
typename TPrimalData, typename TDualData, bool PrimalDual >
bool GeometricalQuadEdge< TVRef, TFRef, TPrimalData, TDualData, PrimalDual >::ReorderOnextRingBeforeAddFace(
Self *second)
{
// Assume "this->Originv()" is a boundary point P that is thrice adjacent
// to noface and consider the given situation is the one depicted by
// the following diagram where:
// - P is "this->Originv()" instance,
// - the * (star) indicates the presence of a face,
// - b1, b2, b3, b4, b5, b6 denote boundary edges,
// - p denotes some generic point,
// - A and B denote some specific points we want to discuss,
// - the Onext() ring order is represented counter-clockwise
// [which is coherent with the definition of edge->GetRigth()]
// i.e. the ordering of the edges is:
// b1, b2, b3, b4, b5, b6, b1...
//
// p N p
// / \ O / \ //
// / \ / \ //
// / \ F / \ counter-clockwise //
// / b3 A b2 \ Onext() ring order //
// / \ C / \ //
// / * \ E / * \ //
// / \ / \ //
// A------b4------P------b1-------B //
// / \ //
// / \ //
// NO FACE / \ NO FACE //
// / \ //
// b5 b6 //
// / * \ //
// / \ //
// p---------------p //
//
// At P this Mesh doesn't represent a 2-manifold (since we are thrice
// on the boundary). Nevertheless such a situation could arise in
// intermediary stages (e.g. when building the Mesh, or during
// surgical changes on the Mesh).
// Now, assume we are asked to build the triangle [P, A, B]. Note
// that this request is not absurd since the current situation at
// P isn't the one of a 2-manifold: hence when building the current
// Onext() ring of P, we had not enough information to decide
// wheter b4.Onext() should be b5 or b1. It is ONLY when we are
// required to build the triangle [P, A, B] that we have the
// additional information that b4.Onext() is indeed b1.
// When we are required to build triangle [P, A, B], we hence
// need to change the Onext() ring order at P, i.e. we need to deal
// with the triangle [P, b5, b6] which currently prevents
// b4.Onext() to be b1. In other terms, when considering the
// additional information that b4.Onext() is b1, and before
// building the triangle [P, A, B], we need to reorder
// the Onext() ring of P from it's current state
// b1, b2, b3, b4, b5, b6, b1...
// to an order coherent with the [P, A, B] request, i.e.
// b1, b2, b5, b6, b3, b4, b1...
//
// In order to establish the "proper" Onext() ring at P we use
// two Splice operations. The algorithm goes:
// - first disconnect the piece of the surface containing the edge
// [PB] (it would be the same process if we chose [PA]) from
// the Onext() ring at P.
// - second, re-integrate the disconnected piece at the desired
// location i.e. side by side with [PA] (respectively [PB] if
// we chose [PA] at first stage).
// By "piece of surface containing the edge [PB]" we mean [all]
// the triangle[s] starting at [PB] in the Onext() order and
// having a left face set.
//
// We can illustrate this process on bit more general diagram than
// the last case (where the "piece of surface containing the edge
// [PB]" is constituted by two triangles) and when using
// the arguments of this method (i.e. [PA] = this and [PB] = second).
// The initial stage is the following (we note first=this=[PA] and
// second=[PB]) where the Onext() ring order is:
// first, b2, b3, second, b5, bsplice, b7, first...
//
// p N A //
// / \ O / \ //
// / \ / \ //
// / \ F / \ counter-clockwise //
// / b2 A first \ Onext() ring order //
// / \ C / \ //
// / * \ E / * \ //
// / \ / \ //
// p-------b3------P------b7-------p //
// /|\ //
// / | \ //
// NO FACE / | \ NO FACE //
// / | \ //
// second b5 bsplice //
// / * | * \ //
// / | \ //
// B-------p-------p //
//
// The first stage, implemented as
// second->Oprev()->Splice( bsplice ),
// yields the following diagram:
//
// p N A //
// / \ O / \ //
// / \ F / \ //
// / \ A / \ counter-clockwise //
// / b2 C first \ Onext() ring order //
// / \ E / \ //
// / * \ / * \ //
// / \ / \ //
// p-------b3------P------b7-------p //
// //
// NO FACE //
// //
// /|\ //
// / | \ //
// / | \ //
// / | \ //
// second b5 bsplice //
// / * | * \ //
// / | \ //
// B-------p-------p //
//
// and the second stage, implemented as
// first->Splice( bsplice ),
// yields the following diagram:
//
// A //
// B__ NO FACE / \ //
// | \__ / \ //
// | \__ / \ counter- //
// | second first \ clockwise for all //
// | \__ / \ //
// | * \__ / * \ //
// | \ / \ //
// p-------b5---------P------b7-------p //
// | __/|\ //
// | * __/ | \ //
// | / | \ NO FACE //
// | bsplice | \ //
// | __/ b2 b3 //
// p__/ | * \ //
// NO FACE | \ //
// p-------p //
//
Self *first = this;
// Making sure point adjacency is correct:
if ( first->GetOrigin() != second->GetOrigin() )
{
itkQEDebugMacro("Edges not adjacent at same point!");
return ( false );
}
if ( first->GetOnext() == second )
{
return ( true );
}
if ( first->IsLeftSet() )
{
itkQEDebugMacro("First should NOT have a left face.");
return ( false );
}
// Second is an internal edge.
if ( second->IsInternal() )
{
return ( false );
}
Self *bsplice; // Does not require initialisation;
// Disconnect the triangles containing second:
if ( second->IsLeftSet() )
{
bsplice = second->GetNextBorderEdgeWithUnsetLeft();
second->GetOprev()->Splice(bsplice);
}
else
{
// Orientation is localy clockwise:
bsplice = second;
second->GetOprev()->Splice(bsplice);
}
// Reconnect second after first:
first->Splice(bsplice);
return ( true );
}
// ---------------------------------------------------------------------
template< typename TVRef, typename TFRef,
typename TPrimalData, typename TDualData, bool PrimalDual >
void GeometricalQuadEdge< TVRef, TFRef, TPrimalData, TDualData, PrimalDual >::Disconnect()
{
if ( this->IsDisconnected() )
{
return;
}
// Update faces if the edge isn't a wire
if ( this->IsAtBorder() )
{
Self * e = ( this->IsRightSet() ) ? this->GetSym() : this;
IteratorGeom it = e->BeginGeomLnext();
while ( it != e->EndGeomLnext() )
{
it.Value()->UnsetLeft();
it++;
}
}
else if ( this->IsInternal() )
{
// Consolidate face
DualOriginRefType face = this->GetRight();
for ( IteratorGeom it = this->BeginGeomLnext();
it != this->EndGeomLnext();
it++ )
{
it.Value()->SetLeft(face);
}
}
// Hint edges
Self *e0 = this->GetOprev();
Self *e1 = this->GetLnext();
// Disconnect entries
if ( !this->IsOriginDisconnected() )
{
e0->Splice(this);
}
if ( !this->IsDestinationDisconnected() )
{
e1->Splice( this->GetSym() );
}
// Normally, this edge is converted to a simple wire
this->UnsetOrigin();
this->UnsetDestination();
this->UnsetLeft();
this->UnsetRight();
}
// ---------------------------------------------------------------------
template< typename TVRef, typename TFRef,
typename TPrimalData, typename TDualData, bool PrimalDual >
bool
GeometricalQuadEdge< TVRef, TFRef, TPrimalData, TDualData, PrimalDual >
::IsOriginSet() const
{
return ( this->m_Origin != m_NoPoint );
}
// ---------------------------------------------------------------------
template< typename TVRef, typename TFRef,
typename TPrimalData, typename TDualData, bool PrimalDual >
bool
GeometricalQuadEdge< TVRef, TFRef, TPrimalData, TDualData, PrimalDual >
::IsDestinationSet() const
{
const Self *p1 = this->GetSym();
if ( p1 == ITK_NULLPTR )
{
return false; // FIXME: Is this the right answer ?
}
return p1->IsOriginSet();
}
// ---------------------------------------------------------------------
template< typename TVRef, typename TFRef,
typename TPrimalData, typename TDualData, bool PrimalDual >
bool
GeometricalQuadEdge< TVRef, TFRef, TPrimalData, TDualData, PrimalDual >
::IsRightSet() const
{
const DualType *p1 = this->GetRot();
if ( p1 == ITK_NULLPTR )
{
return false; // FIXME: Is this the right answer ?
}
return p1->IsOriginSet();
}
// ---------------------------------------------------------------------
template< typename TVRef, typename TFRef,
typename TPrimalData, typename TDualData, bool PrimalDual >
bool
GeometricalQuadEdge< TVRef, TFRef, TPrimalData, TDualData, PrimalDual >
::IsLeftSet() const
{
const DualType *p1 = this->GetInvRot();
if ( p1 == ITK_NULLPTR )
{
return false; // FIXME: Is this the right answer ?
}
return p1->IsOriginSet();
}
} // end of namespace itk
#endif
|