This file is indexed.

/usr/include/ITK-4.9/itkGradientDescentOptimizer.h is in libinsighttoolkit4-dev 4.9.0-4ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkGradientDescentOptimizer_h
#define itkGradientDescentOptimizer_h

#include "itkIntTypes.h"
#include "itkSingleValuedNonLinearOptimizer.h"
#include "ITKOptimizersExport.h"
#include <string>
namespace itk
{
/** \class GradientDescentOptimizer
 * \brief Implement a gradient descent optimizer
 *
 * GradientDescentOptimizer implements a simple gradient descent optimizer.
 * At each iteration the current position is updated according to
 *
 * \f[
 *        p_{n+1} = p_n
 *                + \mbox{learningRate}
                  \, \frac{\partial f(p_n) }{\partial p_n}
 * \f]
 *
 * The learning rate is a fixed scalar defined via SetLearningRate().
 * The optimizer steps through a user defined number of iterations;
 * no convergence checking is done.
 *
 * Additionally, user can scale each component,
 * \f$ \partial f / \partial p \f$,
 * by setting a scaling vector using method SetScale().
 *
 * \sa RegularStepGradientDescentOptimizer
 *
 * \ingroup Numerics Optimizers
 * \ingroup ITKOptimizers
 */
class ITKOptimizers_EXPORT GradientDescentOptimizer:
  public SingleValuedNonLinearOptimizer
{
public:
  /** Standard class typedefs. */
  typedef GradientDescentOptimizer       Self;
  typedef SingleValuedNonLinearOptimizer Superclass;
  typedef SmartPointer< Self >           Pointer;
  typedef SmartPointer< const Self >     ConstPointer;

  /** Method for creation through the object factory. */
  itkNewMacro(Self);

  /** Run-time type information (and related methods). */
  itkTypeMacro(GradientDescentOptimizer, SingleValuedNonLinearOptimizer);

  /** Codes of stopping conditions */
  typedef enum {
    MaximumNumberOfIterations,
    MetricError
    } StopConditionType;

  /** Methods to configure the cost function. */
  itkGetConstReferenceMacro(Maximize, bool);
  itkSetMacro(Maximize, bool);
  itkBooleanMacro(Maximize);
  bool GetMinimize() const
  { return !m_Maximize; }
  void SetMinimize(bool v)
  { this->SetMaximize(!v); }
  void MinimizeOn()
  { this->MaximizeOff(); }
  void MinimizeOff()
  { this->MaximizeOn(); }

  /** Advance one step following the gradient direction. */
  virtual void AdvanceOneStep();

  /** Start optimization. */
  virtual void    StartOptimization(void) ITK_OVERRIDE;

  /** Resume previously stopped optimization with current parameters
   * \sa StopOptimization. */
  void    ResumeOptimization();

  /** Stop optimization.
   * \sa ResumeOptimization */
  void    StopOptimization();

  /** Set the learning rate. */
  itkSetMacro(LearningRate, double);

  /** Get the learning rate. */
  itkGetConstReferenceMacro(LearningRate, double);

  /** Set the number of iterations. */
  itkSetMacro(NumberOfIterations, SizeValueType);

  /** Get the number of iterations. */
  itkGetConstReferenceMacro(NumberOfIterations, SizeValueType);

  /** Get the current iteration number. */
  itkGetConstMacro(CurrentIteration, SizeValueType);

  /** Get the current value. */
  itkGetConstReferenceMacro(Value, double);

  /** Get Stop condition. */
  itkGetConstReferenceMacro(StopCondition, StopConditionType);
  virtual const std::string GetStopConditionDescription() const ITK_OVERRIDE;

  /** Get Gradient condition. */
  itkGetConstReferenceMacro(Gradient, DerivativeType);

protected:
  GradientDescentOptimizer();
  virtual ~GradientDescentOptimizer() {}
  virtual void PrintSelf(std::ostream & os, Indent indent) const ITK_OVERRIDE;

  // made protected so subclass can access
  DerivativeType m_Gradient;

  bool m_Maximize;

  double m_LearningRate;

private:
  GradientDescentOptimizer(const Self &) ITK_DELETE_FUNCTION;
  void operator=(const Self &) ITK_DELETE_FUNCTION;

  bool               m_Stop;
  double             m_Value;
  StopConditionType  m_StopCondition;
  SizeValueType      m_NumberOfIterations;
  SizeValueType      m_CurrentIteration;
  std::ostringstream m_StopConditionDescription;
};
} // end namespace itk

#endif