This file is indexed.

/usr/include/ITK-4.9/itkImageRegistrationMethodv4.h is in libinsighttoolkit4-dev 4.9.0-4ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkImageRegistrationMethodv4_h
#define itkImageRegistrationMethodv4_h

#include "itkProcessObject.h"

#include "itkCompositeTransform.h"
#include "itkDataObjectDecorator.h"
#include "itkObjectToObjectMetricBase.h"
#include "itkObjectToObjectMultiMetricv4.h"
#include "itkObjectToObjectOptimizerBase.h"
#include "itkImageToImageMetricv4.h"
#include "itkPointSetToPointSetMetricv4.h"
#include "itkShrinkImageFilter.h"
#include "itkIdentityTransform.h"
#include "itkTransformParametersAdaptorBase.h"

#include <vector>

namespace itk
{

/** \class ImageRegistrationMethodv4
 * \brief Interface method for the current registration framework.
 *
 * This interface method class encapsulates typical registration
 * usage by incorporating all the necessary elements for performing a
 * simple image registration between two images.  This method also
 * allows for multistage registration whereby each stage is
 * characterize by possibly different transforms of and different
 * image metrics.  For example, many users will want to perform
 * a linear registration followed by deformable registration where
 * both stages are performed in multiple levels.  Each level can be
 * characterized by:
 *
 *   \li the resolution of the virtual domain image (see below)
 *   \li smoothing of the fixed and moving images
 *   \li the coarseness of the current transform via transform adaptors
 *       (see below)
 *
 * Multiple stages are handled by linking multiple instantiations of
 * this class where the output transform is added to the optional
 * composite transform input.
 *
 * Transform adaptors:  To accommodate new changes to the current ITK
 * registration framework, we introduced the concept of transform adaptors.
 * Whereas each stage is associated with a moving and, possibly, fixed
 * transform, each level of each stage is defined by a transform adaptor
 * which describes how to adapt the transform to the current level.  For
 * example, if one were to use the B-spline transform during a deformable
 * registration stage, common practice is to increase the resolution of
 * the B-spline mesh (or, analogously, the control point grid size) at
 * each level.  At each level, one would define the parameters of the
 * B-spline transform adaptor at that level which increases the resolution
 * from the previous level.  For many transforms, such as affine, this
 * concept of an adaptor may be nonsensical.  For this reason, the base
 * transform adaptor class does not do anything to the transform but merely
 * passes it through.  Each level of each stage must define a transform
 * adaptor but, by default, the base adaptor class is assigned which, again,
 * does not do anything to the transform.  A special mention should be made
 * of the transform adaptor at level 0 of any stage.  Most likely, the user
 * will not want to do anything to the transform as it enters into the
 * given stage so typical use will be to assign the base adaptor class to
 * level 0 of all stages but we leave that open to the user.
 *
 * Output: The output is the updated transform.
 *
 * \author Nick Tustison
 * \author Brian Avants
 *
 * \ingroup ITKRegistrationMethodsv4
 */
template<typename TFixedImage,
         typename TMovingImage,
         typename TOutputTransform = Transform<double, TFixedImage::ImageDimension, TFixedImage::ImageDimension>,
         typename TVirtualImage = TFixedImage,
         typename TPointSet = PointSet<unsigned int, TFixedImage::ImageDimension> >
class ImageRegistrationMethodv4
:public ProcessObject
{
public:
  /** Standard class typedefs. */
  typedef ImageRegistrationMethodv4                 Self;
  typedef ProcessObject                             Superclass;
  typedef SmartPointer<Self>                        Pointer;
  typedef SmartPointer<const Self>                  ConstPointer;

  /** Method for creation through the object factory. */
  itkNewMacro( Self );

  /** ImageDimension constants */
  itkStaticConstMacro( ImageDimension, unsigned int, TFixedImage::ImageDimension );

  /** Run-time type information (and related methods). */
  itkTypeMacro( ImageRegistrationMethodv4, ProcessObject );

  /** Input typedefs for the images and transforms. */
  typedef TFixedImage                                                 FixedImageType;
  typedef typename FixedImageType::Pointer                            FixedImagePointer;
  typedef std::vector<FixedImagePointer>                              FixedImagesContainerType;
  typedef TMovingImage                                                MovingImageType;
  typedef typename MovingImageType::Pointer                           MovingImagePointer;
  typedef std::vector<MovingImagePointer>                             MovingImagesContainerType;

  typedef TPointSet                                                   PointSetType;
  typedef typename PointSetType::ConstPointer                         PointSetConstPointer;
  typedef std::vector<PointSetConstPointer>                           PointSetsContainerType;

  /** Metric and transform typedefs */
  typedef TOutputTransform                                            OutputTransformType;
  typedef typename OutputTransformType::Pointer                       OutputTransformPointer;
  typedef typename OutputTransformType::ScalarType                    RealType;
  typedef typename OutputTransformType::DerivativeType                DerivativeType;
  typedef typename DerivativeType::ValueType                          DerivativeValueType;

  typedef Transform<RealType, ImageDimension, ImageDimension>         InitialTransformType;
  typedef typename InitialTransformType::Pointer                      InitialTransformPointer;

  typedef CompositeTransform<RealType, ImageDimension>                CompositeTransformType;
  typedef typename CompositeTransformType::Pointer                    CompositeTransformPointer;

  typedef ObjectToObjectMetricBaseTemplate<RealType>                  MetricType;
  typedef typename MetricType::Pointer                                MetricPointer;

  typedef Vector<RealType, ImageDimension>                            VectorType;

  typedef TVirtualImage                                               VirtualImageType;
  typedef typename VirtualImageType::Pointer                          VirtualImagePointer;
  typedef ImageBase<ImageDimension>                                   VirtualImageBaseType;
  typedef typename VirtualImageBaseType::ConstPointer                 VirtualImageBaseConstPointer;

  typedef ObjectToObjectMultiMetricv4<ImageDimension, ImageDimension, VirtualImageType, RealType>  MultiMetricType;
  typedef ImageToImageMetricv4<FixedImageType, MovingImageType, VirtualImageType, RealType>        ImageMetricType;
  typedef PointSetToPointSetMetricv4<PointSetType, PointSetType, RealType>                         PointSetMetricType;

  /**
   * Type for the output: Using Decorator pattern for enabling the transform to be
   * passed in the data pipeline
   */
  typedef DataObjectDecorator<OutputTransformType>                    DecoratedOutputTransformType;
  typedef typename DecoratedOutputTransformType::Pointer              DecoratedOutputTransformPointer;
  typedef DataObjectDecorator<InitialTransformType>                   DecoratedInitialTransformType;
  typedef typename DecoratedInitialTransformType::Pointer             DecoratedInitialTransformPointer;

  typedef ShrinkImageFilter<FixedImageType, VirtualImageType>         ShrinkFilterType;
  typedef typename ShrinkFilterType::ShrinkFactorsType                ShrinkFactorsPerDimensionContainerType;

  typedef Array<SizeValueType>                                        ShrinkFactorsArrayType;

  typedef Array<RealType>                                             SmoothingSigmasArrayType;
  typedef Array<RealType>                                             MetricSamplingPercentageArrayType;

  /** Transform adaptor typedefs */
  typedef TransformParametersAdaptorBase<InitialTransformType>        TransformParametersAdaptorType;
  typedef typename TransformParametersAdaptorType::Pointer            TransformParametersAdaptorPointer;
  typedef std::vector<TransformParametersAdaptorPointer>              TransformParametersAdaptorsContainerType;

  /**  Type of the optimizer. */
  typedef ObjectToObjectOptimizerBaseTemplate<RealType>               OptimizerType;
  typedef typename OptimizerType::Pointer                             OptimizerPointer;

  /** Weights type for the optimizer. */
  typedef typename OptimizerType::ScalesType                          OptimizerWeightsType;

  /** enum type for metric sampling strategy */
  enum MetricSamplingStrategyType { NONE, REGULAR, RANDOM };

  typedef typename ImageMetricType::FixedSampledPointSetType          MetricSamplePointSetType;

  /** Set/get the fixed images. */
  virtual void SetFixedImage( const FixedImageType *image )
    {
    this->SetFixedImage( 0, image );
    }
  virtual const FixedImageType * GetFixedImage() const
    {
    return this->GetFixedImage( 0 );
    }
  virtual void SetFixedImage( SizeValueType, const FixedImageType * );
  virtual const FixedImageType * GetFixedImage( SizeValueType ) const;

  /** Set the moving images. */
  virtual void SetMovingImage( const MovingImageType *image )
    {
    this->SetMovingImage( 0, image );
    }
  virtual const MovingImageType * GetMovingImage() const
    {
    return this->GetMovingImage( 0 );
    }
  virtual void SetMovingImage( SizeValueType, const MovingImageType * );
  virtual const MovingImageType * GetMovingImage( SizeValueType ) const;

  /** Set/get the fixed point sets. */
  virtual void SetFixedPointSet( const PointSetType *pointSet )
    {
    this->SetFixedPointSet( 0, pointSet );
    }
  virtual const PointSetType * GetFixedPointSet() const
    {
    return this->GetFixedPointSet( 0 );
    }
  virtual void SetFixedPointSet( SizeValueType, const PointSetType * );
  virtual const PointSetType * GetFixedPointSet( SizeValueType ) const;

  /** Set the moving point sets. */
  virtual void SetMovingPointSet( const PointSetType *pointSet )
    {
    this->SetMovingPointSet( 0, pointSet );
    }
  virtual const PointSetType * GetMovingPointSet() const
    {
    return this->GetMovingPointSet( 0 );
    }
  virtual void SetMovingPointSet( SizeValueType, const PointSetType * );
  virtual const PointSetType * GetMovingPointSet( SizeValueType ) const;

  /** Set/Get the optimizer. */
  itkSetObjectMacro( Optimizer, OptimizerType );
  itkGetModifiableObjectMacro( Optimizer, OptimizerType );

  /**
   * Set/Get the optimizer weights.  Allows setting of a per-local-parameter
   * weighting array. If unset, the weights are treated as identity. Weights
   * are used to mask out a particular parameter during optimzation to hold
   * it constant. Or they may be used to apply another kind of prior knowledge.
   * The size of the weights must be equal to the number of the local transformation
   * parameters.
   */
  void SetOptimizerWeights( OptimizerWeightsType & );
  itkGetConstMacro( OptimizerWeights, OptimizerWeightsType );

  /** Set/Get the metric. */
  itkSetObjectMacro( Metric, MetricType );
  itkGetModifiableObjectMacro( Metric, MetricType );

  /** Set/Get the metric sampling strategy. */
  itkSetMacro( MetricSamplingStrategy, MetricSamplingStrategyType );
  itkGetConstMacro( MetricSamplingStrategy, MetricSamplingStrategyType );

  /** Set the metric sampling percentage. */
  void SetMetricSamplingPercentage( const RealType );

  /** Set the metric sampling percentage. */
  itkSetMacro( MetricSamplingPercentagePerLevel, MetricSamplingPercentageArrayType );
  itkGetConstMacro( MetricSamplingPercentagePerLevel, MetricSamplingPercentageArrayType );

  /** Set/Get the initial fixed transform. */
  itkSetGetDecoratedObjectInputMacro( FixedInitialTransform, InitialTransformType );

  /** Set/Get the initial moving transform. */
  itkSetGetDecoratedObjectInputMacro( MovingInitialTransform, InitialTransformType );

  /** Set/Get the initial transform to be optimized
   *
   * This transform is composed with the MovingInitialTransform to
   * specify the initial transformation from the moving image to
   * the virtual image. It is used for the default parameters, and can
   * be use to specify the transform type.
   *
   * If the filter has "InPlace" set then this transform will be the
   * output transform object or "grafted" to the output. Otherwise,
   * this InitialTransform will be deep copied or "cloned" to the
   * output.
   *
   * If this parameter is not set then a default constructed output
   * transform is used.
   */
  itkSetGetDecoratedObjectInputMacro(InitialTransform, InitialTransformType);

  /** Set/Get the transform adaptors. */
  void SetTransformParametersAdaptorsPerLevel( TransformParametersAdaptorsContainerType & );
  const TransformParametersAdaptorsContainerType & GetTransformParametersAdaptorsPerLevel() const;

  /**
   * Set/Get the number of multi-resolution levels.  In setting the number of
   * levels we need to set the following for each level:
   *   \li shrink factors for the virtual domain
   *   \li sigma smoothing parameter
   *   \li transform adaptor with specific parameters for the specified level
   */
  void SetNumberOfLevels( const SizeValueType );
  itkGetConstMacro( NumberOfLevels, SizeValueType );

  /**
   * Set the shrink factors for each level where each level has a constant
   * shrink factor for each dimension.  For example, input to the function
   * of factors = [4,2,1] will shrink the image in every dimension by 4
   * the first level, then by 2 at the second level, then the original resolution
   * for the final level (uses the \c itkShrinkImageFilter).
   */
  void SetShrinkFactorsPerLevel( ShrinkFactorsArrayType factors )
    {
    for( unsigned int level = 0; level < factors.Size(); ++level )
      {
      ShrinkFactorsPerDimensionContainerType shrinkFactors;
      shrinkFactors.Fill( factors[level] );
      this->SetShrinkFactorsPerDimension( level, shrinkFactors );
      }
    }

  /**
   * Get the shrink factors for a specific level.
   */
  ShrinkFactorsPerDimensionContainerType GetShrinkFactorsPerDimension( const unsigned int level ) const
    {
    if( level >= this->m_ShrinkFactorsPerLevel.size() )
      {
      itkExceptionMacro( "Requesting level greater than the number of levels." );
      }
    return this->m_ShrinkFactorsPerLevel[level];
    }

  /**
   * Set the shrink factors for a specific level for each dimension.
   */
  void SetShrinkFactorsPerDimension( unsigned int level, ShrinkFactorsPerDimensionContainerType factors )
    {
    if( level >= this->m_ShrinkFactorsPerLevel.size() )
      {
      this->m_ShrinkFactorsPerLevel.resize( level + 1 );
      }
    this->m_ShrinkFactorsPerLevel[level] = factors;
    this->Modified();
    }

  /**
   * Set/Get the smoothing sigmas for each level.  At each resolution level, a gaussian smoothing
   * filter (specifically, the \c itkDiscreteGaussianImageFilter) is applied.  Sigma values are
   * specified according to the option \c m_SmoothingSigmasAreSpecifiedInPhysicalUnits.
   */
  itkSetMacro( SmoothingSigmasPerLevel, SmoothingSigmasArrayType );
  itkGetConstMacro( SmoothingSigmasPerLevel, SmoothingSigmasArrayType );

  /**
   * Set/Get whether to specify the smoothing sigmas for each level in physical units
   * (default) or in terms of voxels.
   */
  itkSetMacro( SmoothingSigmasAreSpecifiedInPhysicalUnits, bool );
  itkGetConstMacro( SmoothingSigmasAreSpecifiedInPhysicalUnits, bool );
  itkBooleanMacro( SmoothingSigmasAreSpecifiedInPhysicalUnits );

  /** Make a DataObject of the correct type to be used as the specified output. */
  typedef ProcessObject::DataObjectPointerArraySizeType DataObjectPointerArraySizeType;
  using Superclass::MakeOutput;
  virtual DataObjectPointer MakeOutput( DataObjectPointerArraySizeType ) ITK_OVERRIDE;

  /** Returns the transform resulting from the registration process  */
  virtual DecoratedOutputTransformType * GetOutput();
  virtual const DecoratedOutputTransformType * GetOutput() const;

  virtual DecoratedOutputTransformType * GetTransformOutput() { return this->GetOutput(); }
  virtual const DecoratedOutputTransformType * GetTransformOutput() const { return this->GetOutput(); }

  virtual OutputTransformType * GetModifiableTransform();
  virtual const OutputTransformType * GetTransform() const;

  /** Get the current level.  This is a helper function for reporting observations. */
  itkGetConstMacro( CurrentLevel, SizeValueType );

  /** Get the current iteration.  This is a helper function for reporting observations. */
  itkGetConstReferenceMacro( CurrentIteration, SizeValueType );

  /* Get the current metric value.  This is a helper function for reporting observations. */
  itkGetConstReferenceMacro( CurrentMetricValue, RealType );

  /** Get the current convergence value.  This is a helper function for reporting observations. */
  itkGetConstReferenceMacro( CurrentConvergenceValue, RealType );

  /** Get the current convergence state per level.  This is a helper function for reporting observations. */
  itkGetConstReferenceMacro( IsConverged, bool );

  /** Request that the InitialTransform be grafted onto the output,
   * there by not creating a copy.
   */
  itkSetMacro( InPlace, bool );
  itkGetConstMacro( InPlace, bool );
  itkBooleanMacro( InPlace );

  /**
   * Initialize the current linear transform to be optimized with the center of the
   * previous transform in the queue.  This provides a much better initialization than
   * the default origin.
   */
  itkBooleanMacro( InitializeCenterOfLinearOutputTransform );
  itkSetMacro( InitializeCenterOfLinearOutputTransform, bool );
  itkGetConstMacro( InitializeCenterOfLinearOutputTransform, bool );

  /**
   * We try to initialize the center of a linear transform (specifically those
   * derived from itk::MatrixOffsetTransformBase).  There are a number of
   * checks that we need to make to account for all possible scenarios:
   *   1)  we check to make sure the m_OutputTransform is of the appropriate type
   *       such that it makes sense to try to center the transform.  Local transforms
   *       such as SyN and B-spline do not need to be "centered",
   *   2)  we check to make sure the composite transform (to which we'll add the
   *       m_OutputTransform) is not empty,
   *   3)  we look for the first previous transform which has a center parameter,
   *       (which, presumably, been optimized beforehand), and
   */
  void InitializeCenterOfLinearOutputTransform();

#ifdef ITKV3_COMPATIBILITY
  /** Method that initiates the registration. This will Initialize and ensure
   * that all inputs the registration needs are in place, via a call to
   * Initialize() will then start the optimization process via a call to
   * StartOptimization()
   * StartRegistration is an old API from before
   * ImageRegistrationMethod was a subclass of ProcessObject.
   * Historically, one could call StartRegistration() instead of
   * calling Update().  However, when called directly by the user, the
   * inputs to ImageRegistrationMethod may not be up to date.  This
   * may cause an unexpected behavior.
   *
   * Since we cannot eliminate StartRegistration for backward
   * compatibility reasons, we check whether StartRegistration was
   * called directly or whether Update() (which in turn called
   * StartRegistration()). */
  void StartRegistration(void) { this->Update(); }
#endif

protected:
  ImageRegistrationMethodv4();
  virtual ~ImageRegistrationMethodv4();
  virtual void PrintSelf( std::ostream & os, Indent indent ) const ITK_OVERRIDE;

  /** Perform the registration. */
  virtual void  GenerateData() ITK_OVERRIDE;

  virtual void AllocateOutputs();

  /** Initialize by setting the interconnects between the components. */
  virtual void InitializeRegistrationAtEachLevel( const SizeValueType );

  /** Initialize by setting the interconnects between the components. */
  virtual VirtualImageBaseConstPointer GetCurrentLevelVirtualDomainImage();

  /** Get metric samples. */
  virtual void SetMetricSamplePoints();

  SizeValueType                                                   m_CurrentLevel;
  SizeValueType                                                   m_NumberOfLevels;
  SizeValueType                                                   m_CurrentIteration;
  RealType                                                        m_CurrentMetricValue;
  RealType                                                        m_CurrentConvergenceValue;
  bool                                                            m_IsConverged;

  FixedImagesContainerType                                        m_FixedSmoothImages;
  MovingImagesContainerType                                       m_MovingSmoothImages;
  VirtualImagePointer                                             m_VirtualDomainImage;
  PointSetsContainerType                                          m_FixedPointSets;
  PointSetsContainerType                                          m_MovingPointSets;
  SizeValueType                                                   m_NumberOfFixedObjects;
  SizeValueType                                                   m_NumberOfMovingObjects;

  OptimizerPointer                                                m_Optimizer;
  OptimizerWeightsType                                            m_OptimizerWeights;
  bool                                                            m_OptimizerWeightsAreIdentity;

  MetricPointer                                                   m_Metric;
  MetricSamplingStrategyType                                      m_MetricSamplingStrategy;
  MetricSamplingPercentageArrayType                               m_MetricSamplingPercentagePerLevel;
  SizeValueType                                                   m_NumberOfMetrics;
  int                                                             m_FirstImageMetricIndex;
  std::vector<ShrinkFactorsPerDimensionContainerType>             m_ShrinkFactorsPerLevel;
  SmoothingSigmasArrayType                                        m_SmoothingSigmasPerLevel;
  bool                                                            m_SmoothingSigmasAreSpecifiedInPhysicalUnits;

  TransformParametersAdaptorsContainerType                        m_TransformParametersAdaptorsPerLevel;

  CompositeTransformPointer                                       m_CompositeTransform;

  //TODO: m_OutputTransform should be removed and replaced with a named input parameter for
  //      the pipeline
  OutputTransformPointer                                          m_OutputTransform;


private:
  ImageRegistrationMethodv4( const Self & ) ITK_DELETE_FUNCTION;
  void operator=( const Self & ) ITK_DELETE_FUNCTION;

  bool                                                            m_InPlace;

  bool                                                            m_InitializeCenterOfLinearOutputTransform;

  // helper function to create the right kind of concrete transform
  template<typename TTransform>
  static void MakeOutputTransform(SmartPointer<TTransform> &ptr)
    {
      ptr = TTransform::New();
    }

  static void MakeOutputTransform(SmartPointer<InitialTransformType> &ptr)
    {
      ptr = IdentityTransform<RealType, ImageDimension>::New().GetPointer();
    }

};
} // end namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#include "itkImageRegistrationMethodv4.hxx"
#endif

#endif