/usr/include/ITK-4.9/itkImageToImageMetricv4.hxx is in libinsighttoolkit4-dev 4.9.0-4ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 | /*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkImageToImageMetricv4_hxx
#define itkImageToImageMetricv4_hxx
#include "itkImageToImageMetricv4.h"
#include "itkPixelTraits.h"
#include "itkDisplacementFieldTransform.h"
#include "itkCompositeTransform.h"
#include "itkLinearInterpolateImageFunction.h"
#include "itkIdentityTransform.h"
namespace itk
{
template<typename TFixedImage,typename TMovingImage,typename TVirtualImage, typename TInternalComputationValueType, typename TMetricTraits>
ImageToImageMetricv4<TFixedImage, TMovingImage, TVirtualImage, TInternalComputationValueType, TMetricTraits>
::ImageToImageMetricv4()
{
/* Interpolators. Default to linear. */
typedef LinearInterpolateImageFunction< FixedImageType,
CoordinateRepresentationType >
FixedLinearInterpolatorType;
typedef LinearInterpolateImageFunction< MovingImageType,
CoordinateRepresentationType >
MovingLinearInterpolatorType;
this->m_FixedInterpolator = FixedLinearInterpolatorType::New();
this->m_MovingInterpolator = MovingLinearInterpolatorType::New();
/* Setup default gradient filter. It gets initialized with default
* parameters during Initialize. */
this->m_DefaultFixedImageGradientFilter = DefaultFixedImageGradientFilter::New();
this->m_DefaultMovingImageGradientFilter = DefaultMovingImageGradientFilter::New();
this->m_FixedImageGradientFilter = this->m_DefaultFixedImageGradientFilter;
this->m_MovingImageGradientFilter = this->m_DefaultMovingImageGradientFilter;
/* Interpolators for image gradient filters */
this->m_FixedImageGradientInterpolator = FixedImageGradientInterpolatorType::New();
this->m_MovingImageGradientInterpolator = MovingImageGradientInterpolatorType::New();
/* Setup default gradient image function */
this->m_DefaultFixedImageGradientCalculator = DefaultFixedImageGradientCalculator::New();
this->m_DefaultFixedImageGradientCalculator->UseImageDirectionOn();
this->m_FixedImageGradientCalculator = this->m_DefaultFixedImageGradientCalculator;
this->m_DefaultMovingImageGradientCalculator = DefaultMovingImageGradientCalculator::New();
this->m_DefaultMovingImageGradientCalculator->UseImageDirectionOn();
this->m_MovingImageGradientCalculator = this->m_DefaultMovingImageGradientCalculator;
/* Setup default options assuming dense-sampling */
this->m_UseFixedImageGradientFilter = true;
this->m_UseMovingImageGradientFilter = true;
this->m_UseFixedSampledPointSet = false;
this->m_FloatingPointCorrectionResolution = 1e6;
this->m_UseFloatingPointCorrection = false;
this->m_HaveMadeGetValueWarning = false;
this->m_NumberOfSkippedFixedSampledPoints = 0;
this->m_Value = NumericTraits<MeasureType>::max();
this->m_DerivativeResult = ITK_NULLPTR;
this->m_ComputeDerivative = false;
}
template<typename TFixedImage,typename TMovingImage,typename TVirtualImage, typename TInternalComputationValueType, typename TMetricTraits>
ImageToImageMetricv4<TFixedImage, TMovingImage, TVirtualImage, TInternalComputationValueType, TMetricTraits>
::~ImageToImageMetricv4()
{
}
template<typename TFixedImage,typename TMovingImage,typename TVirtualImage, typename TInternalComputationValueType, typename TMetricTraits>
void
ImageToImageMetricv4<TFixedImage, TMovingImage, TVirtualImage, TInternalComputationValueType, TMetricTraits>
::Initialize() throw ( itk::ExceptionObject )
{
itkDebugMacro("Initialize entered");
/* Verify things are connected */
if ( this->m_FixedImage.IsNull() )
{
itkExceptionMacro(<< "FixedImage is not present");
}
if ( this->m_MovingImage.IsNull() )
{
itkExceptionMacro(<< "MovingImage is not present");
}
if ( this->m_FixedTransform.IsNull() )
{
itkExceptionMacro(<< "FixedTransform is not present");
}
if ( this->m_MovingTransform.IsNull() )
{
itkExceptionMacro(<< "MovingTransform is not present");
}
// If the image is provided by a source, update the source.
if ( this->m_MovingImage->GetSource() )
{
this->m_MovingImage->GetSource()->Update();
}
// If the image is provided by a source, update the source.
if ( this->m_FixedImage->GetSource() )
{
this->m_FixedImage->GetSource()->Update();
}
/* If a virtual image has not been set or created,
* create one from fixed image settings */
if( ! this->m_UserHasSetVirtualDomain )
{
/* Instantiate a virtual image, but do not call Allocate to allocate
* the data, to save memory. We don't need data. We'll simply be iterating
* over the image to get indecies and transform to points.
* Note that it will be safer to have a dedicated VirtualImage class
* that prevents accidental access of data. */
/* Just copy information from fixed image */
VirtualImagePointer image = VirtualImageType::New();
image->CopyInformation( this->m_FixedImage );
/* CopyInformation does not copy buffered region */
image->SetBufferedRegion( this->m_FixedImage->GetBufferedRegion() );
image->SetRequestedRegion( this->m_FixedImage->GetRequestedRegion() );
this->SetVirtualDomainFromImage( image );
}
/*
* Superclass Initialize.
* Requires the above actions to already have been taken.
*/
Superclass::Initialize();
/* Map the fixed samples into the virtual domain and store in
* a searpate point set. */
if( this->m_UseFixedSampledPointSet )
{
this->MapFixedSampledPointSetToVirtual();
}
/* Inititialize interpolators. */
itkDebugMacro("Initialize Interpolators");
this->m_FixedInterpolator->SetInputImage( this->m_FixedImage );
this->m_MovingInterpolator->SetInputImage( this->m_MovingImage );
/* Setup for image gradient calculations. */
if( ! this->m_UseFixedImageGradientFilter )
{
itkDebugMacro("Initialize FixedImageGradientCalculator");
this->m_FixedImageGradientImage = ITK_NULLPTR;
this->m_FixedImageGradientCalculator->SetInputImage(this->m_FixedImage);
}
if( ! this->m_UseMovingImageGradientFilter )
{
itkDebugMacro("Initialize MovingImageGradientCalculator");
this->m_MovingImageGradientImage = ITK_NULLPTR;
this->m_MovingImageGradientCalculator->SetInputImage(this->m_MovingImage);
}
/* Initialize default gradient image filters. */
itkDebugMacro("InitializeDefaultFixedImageGradientFilter");
this->InitializeDefaultFixedImageGradientFilter();
itkDebugMacro("InitializeDefaultMovingImageGradientFilter");
this->InitializeDefaultMovingImageGradientFilter();
/* If user set to use a pre-calculated fixed gradient image,
* and the metric is set to use fixed image gradients,
* then we need to calculate the gradient image.
* We only need to compute once. */
if ( this->GetGradientSourceIncludesFixed() && this->m_UseFixedImageGradientFilter )
{
itkDebugMacro("Initialize: ComputeFixedImageGradientFilterImage");
this->ComputeFixedImageGradientFilterImage();
}
/* Compute gradient image for moving image. */
if( this->GetGradientSourceIncludesMoving() && this->m_UseMovingImageGradientFilter )
{
itkDebugMacro("Initialize: ComputeMovingImageGradientFilterImage");
this->ComputeMovingImageGradientFilterImage();
}
}
template<typename TFixedImage,typename TMovingImage,typename TVirtualImage, typename TInternalComputationValueType, typename TMetricTraits>
typename ImageToImageMetricv4<TFixedImage, TMovingImage, TVirtualImage, TInternalComputationValueType, TMetricTraits>::MeasureType
ImageToImageMetricv4<TFixedImage, TMovingImage, TVirtualImage, TInternalComputationValueType, TMetricTraits>
::GetValue() const
{
this->m_ComputeDerivative = false;
DerivativeType derivative;
this->m_DerivativeResult = &derivative;
this->InitializeForIteration();
// Do the threaded processing using the appropriate
// GetValueAndDerivativeThreader. Results get written to
// member vars.
this->GetValueAndDerivativeExecute();
return this->m_Value;
}
template<typename TFixedImage,typename TMovingImage,typename TVirtualImage, typename TInternalComputationValueType, typename TMetricTraits>
void
ImageToImageMetricv4<TFixedImage, TMovingImage, TVirtualImage, TInternalComputationValueType, TMetricTraits>
::GetDerivative( DerivativeType & derivative ) const
{
MeasureType value;
this->GetValueAndDerivative( value, derivative );
}
template<typename TFixedImage,typename TMovingImage,typename TVirtualImage, typename TInternalComputationValueType, typename TMetricTraits>
void
ImageToImageMetricv4<TFixedImage, TMovingImage, TVirtualImage, TInternalComputationValueType, TMetricTraits>
::GetValueAndDerivative( MeasureType & value, DerivativeType & derivative ) const
{
this->m_ComputeDerivative = true;
this->m_DerivativeResult = &derivative;
this->InitializeForIteration();
// Do the threaded processing using the appropriate
// GetValueAndDerivativeThreader. Results get written to
// member vars.
this->GetValueAndDerivativeExecute();
value = this->m_Value;
}
template<typename TFixedImage,typename TMovingImage,typename TVirtualImage, typename TInternalComputationValueType, typename TMetricTraits>
void
ImageToImageMetricv4<TFixedImage, TMovingImage, TVirtualImage, TInternalComputationValueType, TMetricTraits>
::GetValueAndDerivativeExecute() const
{
if( this->m_UseFixedSampledPointSet ) // sparse sampling
{
SizeValueType numberOfPoints = this->GetNumberOfDomainPoints();
if( numberOfPoints < 1 )
{
itkExceptionMacro("VirtualSampledPointSet must have 1 or more points.");
}
typename ImageToImageMetricv4GetValueAndDerivativeThreader< ThreadedIndexedContainerPartitioner, Self >::DomainType range;
range[0] = 0;
range[1] = numberOfPoints - 1;
this->m_SparseGetValueAndDerivativeThreader->Execute( const_cast< Self* >(this), range );
}
else // dense sampling
{
this->m_DenseGetValueAndDerivativeThreader->Execute( const_cast< Self* >(this), this->GetVirtualRegion() );
}
}
template<typename TFixedImage,typename TMovingImage,typename TVirtualImage, typename TInternalComputationValueType, typename TMetricTraits>
void
ImageToImageMetricv4<TFixedImage, TMovingImage, TVirtualImage, TInternalComputationValueType, TMetricTraits>
::InitializeForIteration() const
{
if( this->m_ComputeDerivative )
{
/* This size always comes from the active transform */
const NumberOfParametersType globalDerivativeSize = this->GetNumberOfParameters();
if( this->m_DerivativeResult->GetSize() != globalDerivativeSize )
{
this->m_DerivativeResult->SetSize( globalDerivativeSize );
}
/* Clear derivative final result. */
this->m_DerivativeResult->Fill( NumericTraits< DerivativeValueType >::ZeroValue() );
}
}
template<typename TFixedImage,typename TMovingImage,typename TVirtualImage, typename TInternalComputationValueType, typename TMetricTraits>
bool
ImageToImageMetricv4<TFixedImage, TMovingImage, TVirtualImage, TInternalComputationValueType, TMetricTraits>
::TransformAndEvaluateFixedPoint(
const VirtualPointType & virtualPoint,
FixedImagePointType & mappedFixedPoint,
FixedImagePixelType & mappedFixedPixelValue ) const
{
bool pointIsValid = true;
mappedFixedPixelValue = NumericTraits<FixedImagePixelType>::ZeroValue();
// map the point into fixed space
this->LocalTransformPoint(virtualPoint,mappedFixedPoint);
// check against the mask if one is assigned
if ( this->m_FixedImageMask )
{
// Check if mapped point is within the support region of the fixed image
// mask
pointIsValid = this->m_FixedImageMask->IsInside( mappedFixedPoint );
if( ! pointIsValid )
{
return pointIsValid;
}
}
// Check if mapped point is inside image buffer
pointIsValid = this->m_FixedInterpolator->IsInsideBuffer(mappedFixedPoint);
// Evaluate
if( pointIsValid )
{
mappedFixedPixelValue = this->m_FixedInterpolator->Evaluate(mappedFixedPoint);
}
return pointIsValid;
}
template<typename TFixedImage,typename TMovingImage,typename TVirtualImage, typename TInternalComputationValueType, typename TMetricTraits>
bool
ImageToImageMetricv4<TFixedImage, TMovingImage, TVirtualImage, TInternalComputationValueType, TMetricTraits>
::TransformAndEvaluateMovingPoint(
const VirtualPointType & virtualPoint,
MovingImagePointType & mappedMovingPoint,
MovingImagePixelType & mappedMovingPixelValue ) const
{
bool pointIsValid = true;
mappedMovingPixelValue = NumericTraits<MovingImagePixelType>::ZeroValue();
// map the point into moving space
// Before transforming points, we should convert their types from the ImagePointType (aka Point<double, dim>)
// to TransformPointType (aka Point<ScalarType, dim>).
typename MovingTransformType::OutputPointType localVirtualPoint;
typename MovingTransformType::OutputPointType localMappedMovingPoint;
localVirtualPoint.CastFrom(virtualPoint);
localMappedMovingPoint.CastFrom(mappedMovingPoint);
localMappedMovingPoint = this->m_MovingTransform->TransformPoint( localVirtualPoint );
mappedMovingPoint.CastFrom(localMappedMovingPoint);
// check against the mask if one is assigned
if ( this->m_MovingImageMask )
{
// Check if mapped point is within the support region of the fixed image
// mask
pointIsValid = this->m_MovingImageMask->IsInside( mappedMovingPoint );
if( ! pointIsValid )
{
return pointIsValid;
}
}
// Check if mapped point is inside image buffer
pointIsValid = this->m_MovingInterpolator->IsInsideBuffer(mappedMovingPoint);
// Evaluate
if( pointIsValid )
{
mappedMovingPixelValue = this->m_MovingInterpolator->Evaluate( mappedMovingPoint );
}
return pointIsValid;
}
template<typename TFixedImage,typename TMovingImage,typename TVirtualImage, typename TInternalComputationValueType, typename TMetricTraits>
void
ImageToImageMetricv4<TFixedImage, TMovingImage, TVirtualImage, TInternalComputationValueType, TMetricTraits>
::ComputeFixedImageGradientAtPoint( const FixedImagePointType & mappedPoint, FixedImageGradientType & gradient ) const
{
if ( this->m_UseFixedImageGradientFilter )
{
if( ! this->GetGradientSourceIncludesFixed() )
{
itkExceptionMacro("Attempted to retrieve fixed image gradient from gradient image filter, "
"but GradientSource does not include 'fixed', and thus the gradient image has not been calculated.");
}
gradient = m_FixedImageGradientInterpolator->Evaluate( mappedPoint );
}
else
{
// if not using the gradient image
gradient = this->m_FixedImageGradientCalculator->Evaluate( mappedPoint );
}
}
template<typename TFixedImage,typename TMovingImage,typename TVirtualImage, typename TInternalComputationValueType, typename TMetricTraits>
void
ImageToImageMetricv4<TFixedImage, TMovingImage, TVirtualImage, TInternalComputationValueType, TMetricTraits>
::ComputeMovingImageGradientAtPoint( const MovingImagePointType & mappedPoint, MovingImageGradientType & gradient ) const
{
if ( this->m_UseMovingImageGradientFilter )
{
if( ! this->GetGradientSourceIncludesMoving() )
{
itkExceptionMacro("Attempted to retrieve moving image gradient from gradient image filter, "
"but GradientSource does not include 'moving', and thus the gradient image has not been calculated.");
}
gradient = m_MovingImageGradientInterpolator->Evaluate( mappedPoint );
}
else
{
// if not using the gradient image
gradient = this->m_MovingImageGradientCalculator->Evaluate(mappedPoint);
}
}
template<typename TFixedImage,typename TMovingImage,typename TVirtualImage, typename TInternalComputationValueType, typename TMetricTraits>
void
ImageToImageMetricv4<TFixedImage, TMovingImage, TVirtualImage, TInternalComputationValueType, TMetricTraits>
::ComputeFixedImageGradientFilterImage()
{
this->m_FixedImageGradientFilter->SetInput( this->m_FixedImage );
this->m_FixedImageGradientFilter->Update();
this->m_FixedImageGradientImage = this->m_FixedImageGradientFilter->GetOutput();
this->m_FixedImageGradientInterpolator->SetInputImage( this->m_FixedImageGradientImage );
}
template<typename TFixedImage,typename TMovingImage,typename TVirtualImage, typename TInternalComputationValueType, typename TMetricTraits>
void
ImageToImageMetricv4<TFixedImage, TMovingImage, TVirtualImage, TInternalComputationValueType, TMetricTraits>
::ComputeMovingImageGradientFilterImage() const
{
this->m_MovingImageGradientFilter->SetInput( this->m_MovingImage );
this->m_MovingImageGradientFilter->Update();
this->m_MovingImageGradientImage = this->m_MovingImageGradientFilter->GetOutput();
this->m_MovingImageGradientInterpolator->SetInputImage( this->m_MovingImageGradientImage );
}
template<typename TFixedImage,typename TMovingImage,typename TVirtualImage, typename TInternalComputationValueType, typename TMetricTraits>
void
ImageToImageMetricv4<TFixedImage, TMovingImage, TVirtualImage, TInternalComputationValueType, TMetricTraits>
::InitializeDefaultFixedImageGradientFilter()
{
const typename FixedImageType::SpacingType & spacing = this->m_FixedImage->GetSpacing();
double maximumSpacing = 0.0;
for ( ImageDimensionType i = 0; i < FixedImageDimension; i++ )
{
if ( spacing[i] > maximumSpacing )
{
maximumSpacing = spacing[i];
}
}
this->m_DefaultFixedImageGradientFilter->SetSigma( maximumSpacing );
this->m_DefaultFixedImageGradientFilter->SetNormalizeAcrossScale( true );
this->m_DefaultFixedImageGradientFilter->SetNumberOfThreads( this->GetMaximumNumberOfThreads() );
this->m_DefaultFixedImageGradientFilter->SetUseImageDirection( true );
}
template<typename TFixedImage,typename TMovingImage,typename TVirtualImage, typename TInternalComputationValueType, typename TMetricTraits>
void
ImageToImageMetricv4<TFixedImage, TMovingImage, TVirtualImage, TInternalComputationValueType, TMetricTraits>
::InitializeDefaultMovingImageGradientFilter()
{
const typename MovingImageType::SpacingType & spacing = this->m_MovingImage->GetSpacing();
double maximumSpacing = 0.0;
for ( ImageDimensionType i = 0; i < MovingImageDimension; i++ )
{
if ( spacing[i] > maximumSpacing )
{
maximumSpacing = spacing[i];
}
}
this->m_DefaultMovingImageGradientFilter->SetSigma(maximumSpacing);
this->m_DefaultMovingImageGradientFilter->SetNormalizeAcrossScale(true);
this->m_DefaultMovingImageGradientFilter->SetNumberOfThreads(this->GetMaximumNumberOfThreads());
this->m_DefaultMovingImageGradientFilter->SetUseImageDirection(true);
}
template<typename TFixedImage,typename TMovingImage,typename TVirtualImage, typename TInternalComputationValueType, typename TMetricTraits>
void
ImageToImageMetricv4<TFixedImage, TMovingImage, TVirtualImage, TInternalComputationValueType, TMetricTraits>
::SetMaximumNumberOfThreads( const ThreadIdType number )
{
if( number != this->m_SparseGetValueAndDerivativeThreader->GetMaximumNumberOfThreads() )
{
this->m_SparseGetValueAndDerivativeThreader->SetMaximumNumberOfThreads( number );
this->Modified();
}
if( number != this->m_DenseGetValueAndDerivativeThreader->GetMaximumNumberOfThreads() )
{
this->m_DenseGetValueAndDerivativeThreader->SetMaximumNumberOfThreads( number );
this->Modified();
}
}
template<typename TFixedImage,typename TMovingImage,typename TVirtualImage, typename TInternalComputationValueType, typename TMetricTraits>
ThreadIdType
ImageToImageMetricv4<TFixedImage, TMovingImage, TVirtualImage, TInternalComputationValueType, TMetricTraits>
::GetMaximumNumberOfThreads() const
{
if( this->m_UseFixedSampledPointSet )
{
return this->m_SparseGetValueAndDerivativeThreader->GetMaximumNumberOfThreads();
}
return this->m_DenseGetValueAndDerivativeThreader->GetMaximumNumberOfThreads();
}
template<typename TFixedImage,typename TMovingImage,typename TVirtualImage, typename TInternalComputationValueType, typename TMetricTraits>
ThreadIdType
ImageToImageMetricv4<TFixedImage, TMovingImage, TVirtualImage, TInternalComputationValueType, TMetricTraits>
::GetNumberOfThreadsUsed() const
{
if( this->m_UseFixedSampledPointSet )
{
return this->m_SparseGetValueAndDerivativeThreader->GetNumberOfThreadsUsed();
}
else
{
return this->m_DenseGetValueAndDerivativeThreader->GetNumberOfThreadsUsed();
}
}
template<typename TFixedImage,typename TMovingImage,typename TVirtualImage, typename TInternalComputationValueType, typename TMetricTraits>
void
ImageToImageMetricv4<TFixedImage, TMovingImage, TVirtualImage, TInternalComputationValueType, TMetricTraits>
::MapFixedSampledPointSetToVirtual()
{
this->m_VirtualSampledPointSet = VirtualPointSetType::New();
this->m_VirtualSampledPointSet->Initialize();
typedef typename FixedSampledPointSetType::PointsContainer PointsContainer;
typename PointsContainer::ConstPointer
points = this->m_FixedSampledPointSet->GetPoints();
if( points.IsNull() )
{
itkExceptionMacro("Fixed Sample point set is empty.");
}
typename PointsContainer::ConstIterator fixedIt = points->Begin();
typename FixedTransformType::InverseTransformBasePointer
inverseTransform = this->m_FixedTransform->GetInverseTransform();
if( inverseTransform.IsNull() )
{
itkExceptionMacro("Unable to get inverse transform for mapping sampled "
" point set.");
}
this->m_NumberOfSkippedFixedSampledPoints = 0;
SizeValueType virtualIndex = 0;
while( fixedIt != points->End() )
{
typename FixedSampledPointSetType::PointType point = inverseTransform->TransformPoint( fixedIt.Value() );
typename VirtualImageType::IndexType tempIndex;
/* Verify that the point is valid. We may be working with a resized virtual domain,
* and a fixed sampled point list that was created before the resizing. */
if( this->TransformPhysicalPointToVirtualIndex( point, tempIndex ) )
{
this->m_VirtualSampledPointSet->SetPoint( virtualIndex, point );
virtualIndex++;
}
else
{
this->m_NumberOfSkippedFixedSampledPoints++;
}
++fixedIt;
}
if( this->m_VirtualSampledPointSet->GetNumberOfPoints() == 0 )
{
itkExceptionMacro("The virtual sampled point set has zero points because "
"no fixed sampled points were within the virtual "
"domain after mapping. There are no points to evaulate.");
}
}
template<typename TFixedImage,typename TMovingImage,typename TVirtualImage, typename TInternalComputationValueType, typename TMetricTraits>
SizeValueType
ImageToImageMetricv4<TFixedImage, TMovingImage, TVirtualImage, TInternalComputationValueType, TMetricTraits>
::GetNumberOfDomainPoints() const
{
if( this->m_UseFixedSampledPointSet )
{
//The virtual sampled point set holds the actual points
// over which we're evaluating over.
return this->m_VirtualSampledPointSet->GetNumberOfPoints();
}
else
{
typename VirtualImageType::RegionType region = this->GetVirtualRegion();
return region.GetNumberOfPixels();
}
}
template<typename TFixedImage,typename TMovingImage,typename TVirtualImage, typename TInternalComputationValueType, typename TMetricTraits>
void
ImageToImageMetricv4<TFixedImage, TMovingImage, TVirtualImage, TInternalComputationValueType, TMetricTraits>
::PrintSelf(std::ostream& os, Indent indent) const
{
Superclass::PrintSelf(os, indent);
os << indent << "ImageToImageMetricv4: " << std::endl
<< indent << "GetUseFixedImageGradientFilter: " << this->GetUseFixedImageGradientFilter() << std::endl
<< indent << "GetUseMovingImageGradientFilter: " << this->GetUseMovingImageGradientFilter() << std::endl
<< indent << "UseFloatingPointCorrection: " << this->GetUseFloatingPointCorrection() << std::endl
<< indent << "FloatingPointCorrectionResolution: " << this->GetFloatingPointCorrectionResolution() << std::endl;
itkPrintSelfObjectMacro( FixedImage );
itkPrintSelfObjectMacro( MovingImage );
itkPrintSelfObjectMacro( FixedTransform );
itkPrintSelfObjectMacro( MovingTransform );
itkPrintSelfObjectMacro( FixedImageMask );
itkPrintSelfObjectMacro( MovingImageMask );
}
}//namespace itk
#endif
|