This file is indexed.

/usr/include/ITK-4.9/itkLBFGSOptimizerBasev4.hxx is in libinsighttoolkit4-dev 4.9.0-4ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkLBFGSOptimizerBasev4_hxx
#define itkLBFGSOptimizerBasev4_hxx

#include "itkLBFGSOptimizerBasev4.h"

extern "C" {
  extern double v3p_netlib_dpmeps_();
}

namespace itk
{

template< typename TInternalVnlOptimizerType >
class LBFGSOptimizerBaseHelperv4: public TInternalVnlOptimizerType
{
  public:
  typedef LBFGSOptimizerBaseHelperv4  Self;
  typedef TInternalVnlOptimizerType   Superclass;

  LBFGSOptimizerBaseHelperv4(vnl_cost_function & f,
                             LBFGSOptimizerBasev4<TInternalVnlOptimizerType> * itkObj):
  TInternalVnlOptimizerType(f),
  m_ItkObj(itkObj)
  {
  }

  protected:
  LBFGSOptimizerBasev4<TInternalVnlOptimizerType> * m_ItkObj;

  /** Handle new iteration event */
  virtual bool report_iter();
};


template< typename TInternalVnlOptimizerType >
bool
LBFGSOptimizerBaseHelperv4<TInternalVnlOptimizerType>
::report_iter()
{
  Superclass::report_iter();

  m_ItkObj->InvokeEvent( IterationEvent() );
  m_ItkObj->m_CurrentIteration = this->num_iterations_;

  // Return true to terminate the optimization loop.
  if ( this->num_iterations_ >= m_ItkObj->m_NumberOfIterations )
    {
    return true;
    }
  else
    {
    return false;
    }
}

template<typename TInternalVnlOptimizerType>
LBFGSOptimizerBasev4<TInternalVnlOptimizerType>
::LBFGSOptimizerBasev4():
  m_OptimizerInitialized(false),
  m_Trace(false),
  m_MaximumNumberOfFunctionEvaluations(2000),
  m_GradientConvergenceTolerance(1e-5),
  m_InfinityNormOfProjectedGradient(0.0),
  m_CostFunctionConvergenceFactor(1e+7)
{
  Superclass::SetNumberOfIterations(500);
}

template<typename TInternalVnlOptimizerType>
LBFGSOptimizerBasev4<TInternalVnlOptimizerType>
::~LBFGSOptimizerBasev4()
{
}

template<typename TInternalVnlOptimizerType>
void
LBFGSOptimizerBasev4<TInternalVnlOptimizerType>
::PrintSelf(std::ostream & os, Indent indent) const
{
  Superclass::PrintSelf(os, indent);
  os << indent << "Trace: ";
  if ( m_Trace )
    {
    os << "On";
    }
  else
    {
    os << "Off";
    }
  os << std::endl;
  os << indent << "MaximumNumberOfFunctionEvaluations: "
     << m_MaximumNumberOfFunctionEvaluations << std::endl;
  os << indent << "GradientConvergenceTolerance: "
     << m_GradientConvergenceTolerance << std::endl;
}

template<typename TInternalVnlOptimizerType>
void
LBFGSOptimizerBasev4<TInternalVnlOptimizerType>
::SetTrace(bool flag)
{
  if ( flag == m_Trace )
    {
    return;
    }

  m_Trace = flag;
  if ( m_OptimizerInitialized )
    {
    m_VnlOptimizer->set_trace(m_Trace);
    }

  this->Modified();
}

template<typename TInternalVnlOptimizerType>
void
LBFGSOptimizerBasev4<TInternalVnlOptimizerType>
::SetMaximumNumberOfFunctionEvaluations(unsigned int n)
{
  if ( n == m_MaximumNumberOfFunctionEvaluations )
    {
    return;
    }

  m_MaximumNumberOfFunctionEvaluations = n;
  if ( m_OptimizerInitialized )
    {
    m_VnlOptimizer->set_max_function_evals(
      static_cast< int >( m_MaximumNumberOfFunctionEvaluations ) );
    }

  this->Modified();
}

template<typename TInternalVnlOptimizerType>
void
LBFGSOptimizerBasev4<TInternalVnlOptimizerType>
::SetGradientConvergenceTolerance(double f)
{
  if ( Math::ExactlyEquals(f, m_GradientConvergenceTolerance) )
    {
    return;
    }

  m_GradientConvergenceTolerance = f;
  if ( m_OptimizerInitialized )
    {
    m_VnlOptimizer->set_g_tolerance(m_GradientConvergenceTolerance);
    }

  this->Modified();
}

template<typename TInternalVnlOptimizerType>
void
LBFGSOptimizerBasev4<TInternalVnlOptimizerType>
::SetMetric(MetricType *metric)
{
  // assign to base class
  this->m_Metric = metric;

  // assign to vnl cost-function adaptor
  const unsigned int numberOfParameters = metric->GetNumberOfParameters();

  CostFunctionAdaptorType *adaptor = new CostFunctionAdaptorType( numberOfParameters );

  adaptor->SetCostFunction( metric );

  this->SetCostFunctionAdaptor( adaptor );

  m_VnlOptimizer.TakeOwnership( new InternalOptimizerType( *adaptor, this ) );
}

template<typename TInternalVnlOptimizerType>
void
LBFGSOptimizerBasev4<TInternalVnlOptimizerType>
::StartOptimization(bool /* doOnlyInitialization */)
{
  // Check for a local-support transform.
  // These aren't currently supported, see main class documentation.
  if( this->GetMetric()->HasLocalSupport() )
    {
    itkExceptionMacro("The assigned transform has local-support. This is not supported for this optimizer. See the optimizer documentation.");
    }

  // Perform some verification, check scales,
  // pass settings to cost-function adaptor.
  Superclass::StartOptimization();
}

template<typename TInternalVnlOptimizerType>
typename LBFGSOptimizerBasev4<TInternalVnlOptimizerType>::InternalOptimizerType *
LBFGSOptimizerBasev4<TInternalVnlOptimizerType>
::GetOptimizer()
{
  return m_VnlOptimizer.GetPointer();
}

template<typename TInternalVnlOptimizerType>
const std::string
LBFGSOptimizerBasev4<TInternalVnlOptimizerType>
::GetStopConditionDescription() const
{
  m_StopConditionDescription.str("");
  m_StopConditionDescription << this->GetNameOfClass() << ": ";
  if ( m_VnlOptimizer )
    {
    switch ( m_VnlOptimizer->get_failure_code() )
      {
      case vnl_nonlinear_minimizer::ERROR_FAILURE:
        m_StopConditionDescription << "Failure";
        break;
      case vnl_nonlinear_minimizer::ERROR_DODGY_INPUT:
        m_StopConditionDescription << "Dodgy input";
        break;
      case vnl_nonlinear_minimizer::CONVERGED_FTOL:
        m_StopConditionDescription << "Function tolerance reached after "
                                    << m_CurrentIteration
                                    << " iterations. "
                                    << "The relative reduction of the cost function <= "
                                    << m_CostFunctionConvergenceFactor * v3p_netlib_dpmeps_()
                                    << " = CostFunctionConvergenceFactor ("
                                    << m_CostFunctionConvergenceFactor
                                    << ") * machine precision ("
                                    << v3p_netlib_dpmeps_()
                                    << ").";
        break;
      case vnl_nonlinear_minimizer::CONVERGED_XTOL:
        m_StopConditionDescription << "Solution tolerance reached";
        break;
      case vnl_nonlinear_minimizer::CONVERGED_XFTOL:
        m_StopConditionDescription << "Solution and Function tolerance both reached";
        break;
      case vnl_nonlinear_minimizer::CONVERGED_GTOL:
        m_StopConditionDescription << "Gradient tolerance reached. "
                                   << "Gradient tolerance is "
                                   << m_GradientConvergenceTolerance;
        break;
      case vnl_nonlinear_minimizer::FAILED_TOO_MANY_ITERATIONS:
        m_StopConditionDescription << "Too many function evaluations. Function evaluations  = "
                                   << m_MaximumNumberOfFunctionEvaluations;
        break;
      case vnl_nonlinear_minimizer::FAILED_FTOL_TOO_SMALL:
        m_StopConditionDescription << "Function tolerance too small";
        break;
      case vnl_nonlinear_minimizer::FAILED_XTOL_TOO_SMALL:
        m_StopConditionDescription << "Solution tolerance too small";
        break;
      case vnl_nonlinear_minimizer::FAILED_GTOL_TOO_SMALL:
        m_StopConditionDescription << "Gradient tolerance too small";
        break;
      case vnl_nonlinear_minimizer::FAILED_USER_REQUEST:
        m_StopConditionDescription << "User requested";
        break;
      }
    return m_StopConditionDescription.str();
    }
  else
    {
    return std::string("");
    }
}
} // end namespace itk

#endif