This file is indexed.

/usr/include/ITK-4.9/itkMersenneTwisterRandomVariateGenerator.h is in libinsighttoolkit4-dev 4.9.0-4ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkMersenneTwisterRandomVariateGenerator_h
#define itkMersenneTwisterRandomVariateGenerator_h

#include "itkMacro.h"
#include "itkObjectFactory.h"
#include "itkRandomVariateGeneratorBase.h"
#include "itkIntTypes.h"
#include "vnl/vnl_math.h"
#include <climits>
#include <ctime>

namespace itk
{
namespace Statistics
{
/** \class MersenneTwisterRandomVariateGenerator
 * \brief MersenneTwisterRandom random variate generator
 *
 * \warning This class's instance methods are NOT neither reentrant
 * nor thread-safe, but static methods are both. That is to say you
 * can use separate objects concurrently.
 *
 * This notice was included with the original implementation.
 * The only changes made were to obfuscate the author's email addresses.
 *
 * MersenneTwister.h
 * Mersenne Twister random number generator -- a C++ class MTRand
 * Based on code by Makoto Matsumoto, Takuji Nishimura, and Shawn Cokus
 * Richard J. Wagner  v1.0  15 May 2003  rjwagner at writeme dot com
 *
 * The Mersenne Twister is an algorithm for generating random numbers.  It
 * was designed with consideration of the flaws in various other generators.
 * The period, 2^19937-1, and the order of equidistribution, 623 dimensions,
 * are far greater.  The generator is also fast; it avoids multiplication and
 * division, and it benefits from caches and pipelines.  For more information
 * see the inventors' web page at http:*www.math.keio.ac.jp/~matumoto/emt.html
 *
 * Reference
 * M. Matsumoto and T. Nishimura, "Mersenne Twister: A 623-Dimensionally
 * Equidistributed Uniform Pseudo-Random Number Generator", ACM Transactions on
 * Modeling and Computer Simulation, Vol. 8, No. 1, January 1998, pp 3-30.
 *
 * Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
 * Copyright (C) 2000 - 2003, Richard J. Wagner
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 *   1. Redistributions of source code must retain the above copyright
 *      notice, this list of conditions and the following disclaimer.
 *
 *   2. Redistributions in binary form must reproduce the above copyright
 *      notice, this list of conditions and the following disclaimer in the
 *      documentation and/or other materials provided with the distribution.
 *
 *   3. The names of its contributors may not be used to endorse or promote
 *      products derived from this software without specific prior written
 *      permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * The original code included the following notice:
 *
 *     When you use this, send an email to: matumoto at math dot keio dot ac dot jp
 *     with an appropriate reference to your work.
 *
 * It would be nice to CC:
 * rjwagner at writeme dot com and Cokus at math dot washington dot edu
 * when you write.
 *
 * \ingroup Common
 * \ingroup ITKCommon
 *
 * \wiki
 * \wikiexample{Utilities/MersenneTwisterRandomVariateGenerator,Random number generator}
 * \endwiki
 */
class ITKCommon_EXPORT MersenneTwisterRandomVariateGenerator:
  public RandomVariateGeneratorBase
{
public:

  /** Standard class typedefs. */
  typedef MersenneTwisterRandomVariateGenerator Self;
  typedef RandomVariateGeneratorBase            Superclass;
  typedef SmartPointer< Self >                  Pointer;
  typedef SmartPointer< const Self >            ConstPointer;

  typedef uint32_t IntegerType;

  /** Run-time type information (and related methods). */
  itkTypeMacro(MersenneTwisterRandomVariateGenerator,
               RandomVariateGeneratorBase);

  /** \brief Method for creation through the object factory.
   *
   *  This method allocates a new instance of a Mersenne Twister,
   *  and initializes it with the seed from the global instance.
   */
  static Pointer New();

  /** returns the global Merseene Twister instance
   *
   *   This method returns a Singleton of the Mersenne Twister.
   *   The seed is initialized from the wall clock, but can be
   *   set using SetSeed().
   */
  static Pointer GetInstance();

  /** Length of state vector */
  itkStaticConstMacro(StateVectorLength, IntegerType, 624);

  /** initialize with a simple IntegerType */
  void Initialize(const IntegerType oneSeed);

  /* Initialize with clock time */
  void Initialize();

  /** Get a random variate in the range [0, 1] */
  double GetVariateWithClosedRange();

  /** Get a random variate in the range [0, n] */
  double GetVariateWithClosedRange(const double & n);

  /** Get a range variate in the range [0, 1) */
  double GetVariateWithOpenUpperRange();

  /** Get a range variate in the range [0, n) */
  double GetVariateWithOpenUpperRange(const double & n);

  /** Get a range variate in the range (0, 1) */
  double GetVariateWithOpenRange();

  /** Get a range variate in the range (0, n) */
  double GetVariateWithOpenRange(const double & n);

  /** Get an integer variate in [0, 2^32-1] */
  IntegerType GetIntegerVariate();

  /** Get an integer variate in [0, n] for n < 2^32 */
  IntegerType GetIntegerVariate(const IntegerType & n);

  /** Access to 53-bit random numbers (capacity of IEEE double precision)
   * in the range [0,1) */
  double Get53BitVariate();

  /* Access to a normal random number distribution
   * TODO: Compare with vnl_sample_normal */
  double GetNormalVariate(const double & mean = 0.0,
                          const double & variance = 1.0);

  /* Access to a uniform random number distribution in the range [a, b)
   * TODO: Compare with vnl_sample_uniform */
  double GetUniformVariate(const double & a, const double & b);

  /** get a variate in the range [0, 1]
   * Do NOT use for CRYPTOGRAPHY without securely hashing several returned
   * values together, otherwise the generator state can be learned after
   * reading 624 consecutive values.
   */
  virtual double GetVariate() ITK_OVERRIDE;

  /** Same as GetVariate() */
  double operator()();

  /** Re-seeding functions with same behavior as initializers */
  inline void SetSeed(const IntegerType oneSeed);
  inline void SetSeed();

  /** Return the current seed */
  IntegerType GetSeed() { return this->m_Seed; };

  /*
  // Saving and loading generator state
  void save( IntegerType* saveArray ) const;  // to array of size SAVE
  void load( IntegerType *const loadArray );  // from such array
  */

protected:
  MersenneTwisterRandomVariateGenerator();
  virtual ~MersenneTwisterRandomVariateGenerator();
  virtual void PrintSelf(std::ostream & os, Indent indent) const ITK_OVERRIDE;

  // period parameter
  itkStaticConstMacro (M, unsigned int, 397);

  IntegerType  state[StateVectorLength]; // internal state
  IntegerType *pNext;                    // next value to get from state
  int          left;                     // number of values left before reload
                                         // needed
  IntegerType  m_Seed;                   // Seed value

  /* Reload array with N new values */
  void reload();

  IntegerType hiBit(const IntegerType & u) const { return u & 0x80000000; }
  IntegerType loBit(const IntegerType & u) const { return u & 0x00000001; }
  IntegerType loBits(const IntegerType & u) const { return u & 0x7fffffff; }
  IntegerType mixBits(const IntegerType & u, const IntegerType & v) const
  {
    return hiBit(u) | loBits(v);
  }

  IntegerType twist(const IntegerType & m, const IntegerType & s0, const IntegerType & s1) const
  {
    return m ^ ( mixBits(s0, s1) >> 1 ) ^ ( -static_cast<int32_t>(loBit(s1)) & 0x9908b0df );
  }

  static IntegerType hash(time_t t, clock_t c);

private:

  /** Internal method to actually create a new object. */
  static Pointer CreateInstance();

  // Static/Global Variable need to be thread-safely accessed
  static Pointer             m_StaticInstance;
  static SimpleFastMutexLock m_StaticInstanceLock;
  static IntegerType         m_StaticDiffer;

};  // end of class

// Declare inlined functions.... (must be declared in the header)

inline void
MersenneTwisterRandomVariateGenerator::Initialize(const IntegerType seed)
{
  this->m_Seed = seed;
  // Initialize generator state with seed
  // See Knuth TAOCP Vol 2, 3rd Ed, p.106 for multiplier.
  // In previous versions, most significant bits (MSBs) of the seed affect
  // only MSBs of the state array.  Modified 9 Jan 2002 by Makoto Matsumoto.
  IntegerType *s = state;
  IntegerType *r = state;
  IntegerType  i = 1;

  *s++ = seed & 0xffffffffUL;
  for ( i = 1; i < MersenneTwisterRandomVariateGenerator::StateVectorLength; ++i )
    {
    *s++ = ( 1812433253UL * ( *r ^ ( *r >> 30 ) ) + i ) & 0xffffffffUL;
    r++;
    }
}

inline void
MersenneTwisterRandomVariateGenerator::reload()
{
  // Generate N new values in state
  // Made clearer and faster by Matthew Bellew
  // matthew dot bellew at home dot com

  // get rid of VS warning
  int index = static_cast< int >(
    M - MersenneTwisterRandomVariateGenerator::StateVectorLength );

  IntegerType *p = state;
  int          i;

  for ( i = MersenneTwisterRandomVariateGenerator::StateVectorLength - M; i--; ++p )
    {
    *p = twist(p[M], p[0], p[1]);
    }
  for ( i = M; --i; ++p )
    {
    *p = twist(p[index], p[0], p[1]);
    }
  *p = twist(p[index], p[0], state[0]);

  left = MersenneTwisterRandomVariateGenerator::StateVectorLength, pNext = state;
}

inline void
MersenneTwisterRandomVariateGenerator::Initialize()
{
  SetSeed();
}

inline void
MersenneTwisterRandomVariateGenerator::SetSeed(const IntegerType oneSeed)
{
  // Seed the generator with a simple IntegerType
  Initialize(oneSeed);
  reload();
}

inline void
MersenneTwisterRandomVariateGenerator::SetSeed()
{
  // use time() and clock() to generate a unlikely-to-repeat seed.
  SetSeed( hash( time(ITK_NULLPTR), clock() ) );
}

/** Get an integer variate in [0, 2^32-1] */
inline MersenneTwisterRandomVariateGenerator::IntegerType
MersenneTwisterRandomVariateGenerator::GetIntegerVariate()
{
  if ( left == 0 ) { reload(); }
  --left;

  IntegerType s1 = *pNext++;
  s1 ^= ( s1 >> 11 );
  s1 ^= ( s1 <<  7 ) & 0x9d2c5680;
  s1 ^= ( s1 << 15 ) & 0xefc60000;
  return ( s1 ^ ( s1 >> 18 ) );
}

inline double
MersenneTwisterRandomVariateGenerator::GetVariateWithClosedRange()
{
  return double( GetIntegerVariate() ) * ( 1.0 / 4294967295.0 );
}

/** Get a random variate in the range [0, n] */
inline double
MersenneTwisterRandomVariateGenerator::GetVariateWithClosedRange(
  const double & n)
{
  return GetVariateWithClosedRange() * n;
}

/** Get a range variate in the range [0, 1) */
inline double
MersenneTwisterRandomVariateGenerator::GetVariateWithOpenUpperRange()
{
  return double( GetIntegerVariate() ) * ( 1.0 / 4294967296.0 );
}

/** Get a range variate in the range [0, n) */
inline double
MersenneTwisterRandomVariateGenerator::GetVariateWithOpenUpperRange(
  const double & n)
{
  return GetVariateWithOpenUpperRange() * n;
}

/** Get a range variate in the range (0, 1) */
inline double
MersenneTwisterRandomVariateGenerator::GetVariateWithOpenRange()
{
  return ( double( GetIntegerVariate() ) + 0.5 ) * ( 1.0 / 4294967296.0 );
}

/** Get a range variate in the range (0, n) */
inline double
MersenneTwisterRandomVariateGenerator::GetVariateWithOpenRange(
  const double & n)
{
  return GetVariateWithOpenRange() * n;
}

inline MersenneTwisterRandomVariateGenerator::IntegerType
MersenneTwisterRandomVariateGenerator::GetIntegerVariate(
  const IntegerType & n)
{
  // Find which bits are used in n
  // Optimized by Magnus Jonsson magnus at smartelectronix dot com
  IntegerType used = n;

  used |= used >> 1;
  used |= used >> 2;
  used |= used >> 4;
  used |= used >> 8;
  used |= used >> 16;

  // Draw numbers until one is found in [0,n]
  IntegerType i;
  do
    {
    i = GetIntegerVariate() & used;  // toss unused bits to shorten search
    }
  while ( i > n );

  return i;
}

/** Access to 53-bit random numbers (capacity of IEEE double precision)
 * in the range [0,1) */
inline double
MersenneTwisterRandomVariateGenerator::Get53BitVariate()
{
  IntegerType a = GetIntegerVariate() >> 5, b = GetIntegerVariate() >> 6;

  return ( a * 67108864.0 + b ) * ( 1.0 / 9007199254740992.0 );  // by Isaku
                                                                 // Wada
}

/* Access to a normal random number distribution */
// TODO: Compare with vnl_sample_normal
inline double
MersenneTwisterRandomVariateGenerator::GetNormalVariate(
  const double & mean, const double & variance)
{
  // Return a real number from a normal (Gaussian) distribution with given
  // mean and variance by Box-Muller method
  double r = std::sqrt(-2.0 * std::log( 1.0 - GetVariateWithOpenRange() ) * variance);
  double phi = 2.0 * vnl_math::pi
               * GetVariateWithOpenUpperRange();

  return mean + r *std::cos(phi);
}

/* Access to a uniform random number distribution */
// TODO: Compare with vnl_sample_uniform
inline double
MersenneTwisterRandomVariateGenerator::GetUniformVariate(
  const double & a, const double & b)
{
  double u = GetVariateWithOpenUpperRange();

  return ( ( 1.0 - u ) * a + u * b );
}

inline double
MersenneTwisterRandomVariateGenerator::GetVariate()
{
  return GetVariateWithClosedRange();
}

inline double
MersenneTwisterRandomVariateGenerator::operator()()
{
  return GetVariate();
}

/* Change log from MTRand.h */
// Change log:
//
// v0.1 - First release on 15 May 2000
//      - Based on code by Makoto Matsumoto, Takuji Nishimura, and Shawn Cokus
//      - Translated from C to C++
//      - Made completely ANSI compliant
//      - Designed convenient interface for initialization, seeding, and
//        obtaining numbers in default or user-defined ranges
//      - Added automatic seeding from /dev/urandom or time() and clock()
//      - Provided functions for saving and loading generator state
//
// v0.2 - Fixed bug which reloaded generator one step too late
//
// v0.3 - Switched to clearer, faster reload() code from Matthew Bellew
//
// v0.4 - Removed trailing newline in saved generator format to be consistent
//        with output format of built-in types
//
// v0.5 - Improved portability by replacing static const int's with enum's and
//        clarifying return values in seed(); suggested by Eric Heimburg
//      - Removed MAXINT constant; use 0xffffffffUL instead
//
// v0.6 - Eliminated seed overflow when uint32 is larger than 32 bits
//      - Changed integer [0,n] generator to give better uniformity
//
// v0.7 - Fixed operator precedence ambiguity in reload()
//      - Added access for real numbers in (0,1) and (0,n)
//
// v0.8 - Included time.h header to properly support time_t and clock_t
//
// v1.0 - Revised seeding to match 26 Jan 2002 update of Nishimura and Matsumoto
//      - Allowed for seeding with arrays of any length
//      - Added access for real numbers in [0,1) with 53-bit resolution
//      - Added access for real numbers from normal (Gaussian) distributions
//      - Increased overall speed by optimizing twist()
//      - Doubled speed of integer [0,n] generation
//      - Fixed out-of-range number generation on 64-bit machines
//      - Improved portability by substituting literal constants for long enum's
//      - Changed license from GNU LGPL to BSD
} // end of namespace Statistics
} // end of namespace itk

#endif