This file is indexed.

/usr/include/ITK-4.9/itkMultilayerNeuralNetworkBase.h is in libinsighttoolkit4-dev 4.9.0-4ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkMultilayerNeuralNetworkBase_h
#define itkMultilayerNeuralNetworkBase_h

#include "itkNeuralNetworkObject.h"

namespace itk
{
namespace Statistics
{
/** \class MultilayerNeuralNetworkBase
 * \brief This is the itkMultilayerNeuralNetworkBase class.
 *
 * \ingroup ITKNeuralNetworks
 */

template<typename TMeasurementVector, typename TTargetVector,typename TLearningLayer=LayerBase<TMeasurementVector, TTargetVector> >
class MultilayerNeuralNetworkBase : public NeuralNetworkObject<TMeasurementVector, TTargetVector>
{
public:

  typedef MultilayerNeuralNetworkBase  Self;
  typedef NeuralNetworkObject<TMeasurementVector, TTargetVector>
                                       Superclass;
  typedef SmartPointer<Self>           Pointer;
  typedef SmartPointer<const Self>     ConstPointer;

  itkTypeMacro(MultilayerNeuralNetworkBase, NeuralNetworkObject);

  /** New macro for creation of through a Smart Pointer. */
  itkNewMacro( Self );

  typedef typename Superclass::ValueType             ValueType;
  typedef typename Superclass::MeasurementVectorType MeasurementVectorType;
  typedef typename Superclass::TargetVectorType      TargetVectorType;
  typedef typename Superclass::NetworkOutputType     NetworkOutputType;

  typedef typename Superclass::LayerInterfaceType        LayerInterfaceType;

  typedef TLearningLayer                                 LearningLayerType;
  typedef LearningFunctionBase<typename TLearningLayer::LayerInterfaceType, TTargetVector>
                                                         LearningFunctionInterfaceType;

  typedef std::vector<typename LayerInterfaceType::WeightSetInterfaceType::Pointer>
                                                         WeightVectorType;
        typedef std::vector<typename LayerInterfaceType::Pointer>
                                                         LayerVectorType;

        typedef TransferFunctionBase<ValueType>          TransferFunctionInterfaceType;
        typedef InputFunctionBase<ValueType*, ValueType> InputFunctionInterfaceType;

//#define __USE_OLD_INTERFACE  Comment out to ensure that new interface works
#ifdef __USE_OLD_INTERFACE
  itkSetMacro(NumOfLayers, int);
  itkGetConstReferenceMacro(NumOfLayers, int);

  itkSetMacro(NumOfWeightSets, int);
  itkGetConstReferenceMacro(NumOfWeightSets, int);
#else
  int GetNumOfLayers(void) const
    {
    return m_Layers.size();
    }
  int GetNumOfWeightSets(void) const
    {
    return m_Weights.size();
    }

#endif

  void AddLayer(LayerInterfaceType *);
  LayerInterfaceType * GetLayer(int layer_id);
  const LayerInterfaceType * GetLayer(int layer_id) const;

  void AddWeightSet(typename LayerInterfaceType::WeightSetInterfaceType*);
  typename LayerInterfaceType::WeightSetInterfaceType* GetWeightSet(unsigned int id)
    {
    return m_Weights[id].GetPointer();
    }
#ifdef __USE_OLD_INTERFACE
  const typename LayerInterfaceType::WeightSetInterfaceType* GetWeightSet(unsigned int id) const;
#endif

  void SetLearningFunction(LearningFunctionInterfaceType* f);

  virtual NetworkOutputType GenerateOutput(TMeasurementVector samplevector) ITK_OVERRIDE;

  virtual void BackwardPropagate(NetworkOutputType errors) ITK_OVERRIDE;
  virtual void UpdateWeights(ValueType) ITK_OVERRIDE;

  void SetLearningRule(LearningFunctionInterfaceType*);

  void SetLearningRate(ValueType learningrate);

  void InitializeWeights();

protected:
  MultilayerNeuralNetworkBase();
  ~MultilayerNeuralNetworkBase();

  LayerVectorType                                   m_Layers;
  WeightVectorType                                  m_Weights;
  typename LearningFunctionInterfaceType::Pointer   m_LearningFunction;
  ValueType                                         m_LearningRate;
  //#define __USE_OLD_INTERFACE  Comment out to ensure that new interface works
#ifdef __USE_OLD_INTERFACE
  //These are completely redundant variables that can be more reliably queried from
  // m_Layers->size() and m_Weights->size();
  int                             m_NumOfLayers;
  int                             m_NumOfWeightSets;
#endif
  /** Method to print the object. */
  virtual void PrintSelf( std::ostream& os, Indent indent ) const ITK_OVERRIDE;
};

} // end namespace Statistics
} // end namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#include "itkMultilayerNeuralNetworkBase.hxx"
#endif

#endif