This file is indexed.

/usr/include/ITK-4.9/itkNeighborhoodIterator.h is in libinsighttoolkit4-dev 4.9.0-4ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkNeighborhoodIterator_h
#define itkNeighborhoodIterator_h

#include <vector>
#include <cstring>
#include <iostream>
#include "itkConstNeighborhoodIterator.h"

namespace itk
{
/**
 * \class NeighborhoodIterator
 * \brief  Defines iteration of a local N-dimensional neighborhood of pixels
 * across an itk::Image.
 *
 * This class is a loose extension of the Standard Template Library (STL)
 * bi-directional iterator concept to \em masks of pixel neighborhoods within
 * itk::Image objects.  This NeighborhoodIterator base class defines simple
 * forward and reverse iteration of an N-dimensional neighborhood mask
 * across an image.  Elements within the mask can be accessed like elements
 * within an array.
 *
 * NeighborhoodIterators are designed to encapsulate some of the complexity of
 * working with image neighborhoods, complexity that would otherwise have to be
 * managed at the algorithmic level.  Use NeighborhoodIterators to simplify
 * writing algorithms that perform geometrically localized operations on images
 * (for example, convolution and morphological operations).
 *
 * To motivate the discussion of NeighborhoodIterators and their use in
 * Itk, consider the following code that takes directional derivatives at each
 * point in an image.
 *
 * \code
 * itk::NeighborhoodInnerProduct<ImageType> IP;
 *
 * itk::DerivativeOperator<ImageType> operator;
 *  operator->SetOrder(1);
 *  operator->SetDirection(0);
 *  operator->CreateDirectional();
 *
 * itk::NeighborhoodIterator<ImageType>
 *   iterator(operator->GetRadius(), myImage, myImage->GetRequestedRegion());
 *
 * iterator.SetToBegin();
 * while ( ! iterator.IsAtEnd() )
 * {
 *   std::cout << "Derivative at index " << iterator.GetIndex() << is <<
 *     IP(iterator, operator) << std::endl;
 *   ++iterator;
 * }
 * \endcode
 *
 * Most of the work for the programmer in the code above is in setting up for
 * the iteration.  There are three steps.  First an inner product function
 * object is created which will be used to effect convolution with the
 * derivative kernel.  Setting up the derivative kernel, DerivativeOperator,
 * involves setting the order and direction of the derivative.  Finally, we
 * create an iterator over the RequestedRegion of the itk::Image (see Image)
 * using the radius of the derivative kernel as the size.
 *
 * Itk iterators only loosely follow STL conventions.  Notice that instead of
 * asking myImage for myImage.begin() and myImage.end(), iterator.SetToBegin()
 * and iterator.IsAtEnd() are called.  Itk iterators are typically more complex
 * objects than traditional, pointer-style STL iterators, and the increased
 * overhead required to conform to the complete STL API is not always
 * justified.
 *
 * The API for creating and manipulating a NeighborhoodIterator mimics
 * that of the itk::ImageIterators.  Like the itk::ImageIterator, a
 * ConstNeighborhoodIterator is defined on a region of interest in an itk::Image.
 * Iteration is constrained within that region of interest.
 *
 * A NeighborhoodIterator is constructed as a container of pointers (offsets)
 * to a geometric neighborhood of image pixels.  As the central pixel position
 * in the mask is moved around the image, the neighboring pixel pointers
 * (offsets) are moved accordingly.
 *
 * A \em pixel \em neighborhood is defined as a central pixel location and an
 * N-dimensional radius extending outward from that location.
 *
 * Pixels in a neighborhood can be accessed through a NeighborhoodIterator
 * like elements in an array.  For example, a 2D neighborhood with radius 2x1
 * has indices:
 *
 * \code
 *
 * 0  1  2  3  4
 * 5  6  7  8  9
 * 10 11 12 13 14
 *
 * \endcode
 *
 * Now suppose a NeighborhoodIterator with the above dimensions is constructed
 * and positioned over a neighborhood of values in an Image:
 *
 * \code
 *
 * 1.2 1.3 1.8 1.4 1.1
 * 1.8 1.1 0.7 1.0 1.0
 * 2.1 1.9 1.7 1.4 2.0
 *
 * \endcode
 *
 * Shown below is some sample pixel access code and the values that it returns.
 *
 * \code
 *
 * SizeValueType c = (SizeValueType) (iterator.Size() / 2); // get offset of center pixel
 * SizeValueType s = iterator.GetStride(1);            // y-dimension step size
 *
 * std::cout << iterator.GetPixel(7)      << std::endl;
 * std::cout << iterator.GetCenterPixel() << std::endl;
 * std::cout << iterator.GetPixel(c)      << std::endl;
 * std::cout << iterator.GetPixel(c-1)    << std::endl;
 * std::cout << iterator.GetPixel(c-s)    << std::endl;
 * std::cout << iterator.GetPixel(c-s-1)  << std::endl;
 * std::cout << *iterator[c]              << std::endl;
 *
 * \endcode
 *
 * Results:
 *
 * \code
 * 0.7
 * 0.7
 * 0.7
 * 1.1
 * 1.8
 * 1.3
 * 0.7
 * \endcode
 *
 * Use of GetPixel() is preferred over the *iterator[] form, and can be used
 * without loss of efficiency in most cases. Some variations (subclasses) of
 * NeighborhoodIterators may exist which do not support the latter
 * API. Corresponding SetPixel() methods exist to modify pixel values in
 * non-const NeighborhoodIterators.
 *
 * NeighborhoodIterators are "bidirectional iterators". They move only in two
 * directions through the data set.  These directions correspond to the layout
 * of the image data in memory and not to spatial directions of the
 * N-dimensional itk::Image.  Iteration always proceeds along the fastest
 * increasing dimension (as defined by the layout of the image data) .  For
 * itk::Image this is the first dimension specified (i.e. for 3-dimensional
 * (x,y,z) NeighborhoodIterator proceeds along the x-dimension) (For random
 * access iteration through N-dimensional indices, use
 * RandomAccessNeighborhoodIterator.)
 *
 * Each subclass of a ConstNeighborhoodIterator may also define its own
 * mechanism for iteration through an image.  In general, the Iterator does not
 * directly keep track of its spatial location in the image, but uses a set of
 * internal loop variables and offsets to trigger wraps at itk::Image region
 * boundaries, and to identify the end of the itk::Image region.
 *
 * \todo Better support for regions with negative indices.
 * \todo Add Begin() and End() methods?
 *
 * \sa DerivativeOperator \sa NeighborhoodInnerProduct
 *
 * \par MORE INFORMATION
 * For a complete description of the ITK Image Iterators and their API, please
 * see the Iterators chapter in the ITK Software Guide.  The ITK Software Guide
 * is available in print and as a free .pdf download from http://www.itk.org.
 *
 * \ingroup ImageIterators
 *
 * \sa ImageConstIterator \sa ConditionalConstIterator
 * \sa ConstNeighborhoodIterator \sa ConstShapedNeighborhoodIterator
 * \sa ConstSliceIterator  \sa CorrespondenceDataStructureIterator
 * \sa FloodFilledFunctionConditionalConstIterator
 * \sa FloodFilledImageFunctionConditionalConstIterator
 * \sa FloodFilledImageFunctionConditionalIterator
 * \sa FloodFilledSpatialFunctionConditionalConstIterator
 * \sa FloodFilledSpatialFunctionConditionalIterator
 * \sa ImageConstIterator \sa ImageConstIteratorWithIndex
 * \sa ImageIterator \sa ImageIteratorWithIndex
 * \sa ImageLinearConstIteratorWithIndex  \sa ImageLinearIteratorWithIndex
 * \sa ImageRandomConstIteratorWithIndex  \sa ImageRandomIteratorWithIndex
 * \sa ImageRegionConstIterator \sa ImageRegionConstIteratorWithIndex
 * \sa ImageRegionExclusionConstIteratorWithIndex
 * \sa ImageRegionExclusionIteratorWithIndex
 * \sa ImageRegionIterator  \sa ImageRegionIteratorWithIndex
 * \sa ImageRegionReverseConstIterator  \sa ImageRegionReverseIterator
 * \sa ImageReverseConstIterator  \sa ImageReverseIterator
 * \sa ImageSliceConstIteratorWithIndex  \sa ImageSliceIteratorWithIndex
 * \sa NeighborhoodIterator \sa PathConstIterator  \sa PathIterator
 * \sa ShapedNeighborhoodIterator  \sa SliceIterator
 * \sa ImageConstIteratorWithIndex
 *
 * \ingroup Operators
 * \ingroup ITKCommon
 *
 * \wiki
 * \wikiexample{Iterators/NeighborhoodIterator,Iterate over a region of an image with a neighborhood (with write access)}
 * \wikiexample{VectorImages/NeighborhoodIterator,NeighborhoodIterator on a VectorImage}
 * \endwiki
 */
template< typename TImage, typename TBoundaryCondition =
            ZeroFluxNeumannBoundaryCondition< TImage > >
class NeighborhoodIterator:
  public ConstNeighborhoodIterator< TImage, TBoundaryCondition >
{
public:
  /** Standard class typedefs. */
  typedef NeighborhoodIterator                                    Self;
  typedef ConstNeighborhoodIterator< TImage, TBoundaryCondition > Superclass;

  /** Extract typedefs from superclass. */
  typedef typename Superclass::InternalPixelType InternalPixelType;
  typedef typename Superclass::PixelType         PixelType;
  typedef typename Superclass::SizeType          SizeType;
  typedef typename Superclass::ImageType         ImageType;
  typedef typename Superclass::RegionType        RegionType;
  typedef typename Superclass::IndexType         IndexType;
  typedef typename Superclass::OffsetType        OffsetType;
  typedef typename Superclass::RadiusType        RadiusType;
  typedef typename Superclass::NeighborhoodType  NeighborhoodType;
  typedef typename Superclass::Iterator          Iterator;
  typedef typename Superclass::ConstIterator     ConstIterator;
  typedef typename Superclass::ImageBoundaryConditionPointerType
  ImageBoundaryConditionPointerType;

  /** Default constructor. */
  NeighborhoodIterator():Superclass() {}

  /** Copy constructor */
  NeighborhoodIterator(const NeighborhoodIterator & n):Superclass(n) {}

  /** Assignment operator */
  Self & operator=(const Self & orig)
  {
    Superclass::operator=(orig);
    return *this;
  }

  /** Constructor which establishes the region size, neighborhood, and image
   * over which to walk. */
  NeighborhoodIterator(const SizeType & radius, ImageType *ptr,
                       const RegionType & region):
    Superclass(radius, ptr, region) {}

  /** Standard print method */
  virtual void PrintSelf(std::ostream &, Indent) const;

  /** Returns the central memory pointer of the neighborhood. */
  InternalPixelType * GetCenterPointer()
  { return ( this->operator[]( ( this->Size() ) >> 1 ) ); }

  /** Returns the central pixel of the neighborhood. */
  virtual void SetCenterPixel(const PixelType & p)
  { this->m_NeighborhoodAccessorFunctor.Set(this->operator[]( ( this->Size() ) >> 1 ), p); }

  /** Virtual function that replaces the pixel values in the image
   * neighborhood that are pointed to by this NeighborhoodIterator with
   * the pixel values contained in a Neighborhood. */
  virtual void SetNeighborhood(const NeighborhoodType &);

  /** Special SetPixel method which quietly ignores out-of-bounds attempts.
   *  Sets status TRUE if pixel has been set, FALSE otherwise.  */
  virtual void SetPixel(const unsigned i, const PixelType & v,
                        bool  & status);

  /** Set the pixel at the ith location. */
  virtual void SetPixel(const unsigned i, const PixelType & v);

  //  { *(this->operator[](i)) = v; }

  /** Set the pixel at offset o from the neighborhood center */
  virtual void SetPixel(const OffsetType o, const PixelType & v)
  { this->SetPixel(this->GetNeighborhoodIndex(o), v); }
  //  { *(this->operator[](o)) = v; }

  /** Sets the pixel value located i pixels distant from the neighborhood center in
      the positive specified ``axis'' direction. No bounds checking is done on
      the size of the neighborhood. */
  virtual void SetNext(const unsigned axis, const unsigned i,
                       const PixelType & v)
  {
    this->SetPixel(this->GetCenterNeighborhoodIndex()
                   + ( i * this->GetStride(axis) ), v);
  }

  /** Sets the pixel value located one pixel distant from the neighborhood center in
      the specifed positive axis direction. No bounds checking is done on the
      size of the neighborhood. */
  virtual void SetNext(const unsigned axis, const PixelType & v)
  {
    this->SetPixel(this->GetCenterNeighborhoodIndex()
                   + this->GetStride(axis), v);
  }

  /** Sets the pixel value located i pixels distant from the neighborhood center in
      the negative specified ``axis'' direction. No bounds checking is done on
      the size of the neighborhood. */
  virtual void SetPrevious(const unsigned axis, const unsigned i,
                           const PixelType & v)
  {
    this->SetPixel(this->GetCenterNeighborhoodIndex()
                   - ( i * this->GetStride(axis) ), v);
  }

  /** Sets the pixel value located one pixel distant from the neighborhood center in
      the specifed negative axis direction. No bounds checking is done on the
      size of the neighborhood. */
  virtual void SetPrevious(const unsigned axis,
                           const PixelType & v)
  {
    this->SetPixel(this->GetCenterNeighborhoodIndex()
                   - this->GetStride(axis), v);
  }
};
} // namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#include "itkNeighborhoodIterator.hxx"
#endif

#endif