This file is indexed.

/usr/include/ITK-4.9/itkObjectToObjectOptimizerBase.h is in libinsighttoolkit4-dev 4.9.0-4ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkObjectToObjectOptimizerBase_h
#define itkObjectToObjectOptimizerBase_h

#include "itkOptimizerParameters.h"
#include "itkOptimizerParameterScalesEstimator.h"
#include "itkObjectToObjectMetricBase.h"
#include "itkIntTypes.h"

namespace itk
{
/** \class ObjectToObjectOptimizerBaseTemplate
 * \brief Abstract base for object-to-object optimizers.
 *
 * The goal of this optimizer hierarchy is to work with metrics
 * of any type, i.e. working with any kind of object, such as
 * image or point-set.
 *
 * Transform parameters are not manipulated directly. Instead,
 * the optimizer retrieves the metric derivative from the metric,
 * modifies the derivative as required, then passes it back to
 * the metric as an update. The metric then processes it as
 * appropriate, typically by passing it to its transform that is
 * being optimized.
 *
 * The user can scale each component of the gradient (derivative)
 * at each iteration in one of two ways:
 *
 * 1) manually, by setting a scaling vector using method SetScales().
 * SetScales() allows setting of a per-local-parameter scaling array. If
 * unset, the \c m_Scales array will be initialized to all 1's.
 * Note that when used with transforms with local support, these scales
 * correspond to each _local_ parameter, and not to each parameter. For
 * example, in a DisplacementFieldTransform of dimensionality N, the Scales
 * is size N, with each element corresponding to a dimension within the
 * transform's displacement field, and is applied to each vector in the
 * displacement field.
 *
 * or,
 *
 * 2) automatically, by assigning a ScalesEstimator using SetScalesEstimator().
 * When ScalesEstimator is assigned, the optimizer is enabled by default to
 * estimate scales, and can be changed via SetDoEstimateScales(). The scales
 * are estimated and assigned once, during the call to StartOptimization().
 * This option will override any manually-assigned scales.
 *
 *
 * SetWeights() allows setting of a per-local-parameter weighting array.
 * If unset, the weights are treated as identity. Weights are multiplied
 * by the gradient at the same time scaling is applied. Weights are
 * different than scales, and may be used, for example, to easily mask out a
 * particular parameter during optimzation to hold it constant. Or they
 * may be used to apply another kind of prior knowledge.
 *
 * Threading of some optimizer operations may be handled within
 * derived classes, for example in GradientDescentOptimizer.
 *
 * \note Derived classes must override StartOptimization, and then call
 * this base class version to perform common initializations.
 *
 * \ingroup ITKOptimizersv4
 */
template< typename TInternalComputationValueType = double>
class ObjectToObjectOptimizerBaseTemplate : public Object
{
public:
  /** Standard class typedefs. */
  typedef ObjectToObjectOptimizerBaseTemplate         Self;
  typedef Object                                      Superclass;
  typedef SmartPointer< Self >                        Pointer;
  typedef SmartPointer< const Self >                  ConstPointer;

  /** Run-time type information (and related methods). */
  itkTypeMacro(ObjectToObjectOptimizerBaseTemplate, Object);

  /**  Scale type. */
  typedef OptimizerParameters< TInternalComputationValueType >                      ScalesType;
  typedef OptimizerParameterScalesEstimatorTemplate<TInternalComputationValueType>  ScalesEstimatorType;

  /**  Parameters type. */
  typedef OptimizerParameters< TInternalComputationValueType >          ParametersType;

  /** Metric function type */
  typedef ObjectToObjectMetricBaseTemplate< TInternalComputationValueType >  MetricType;
  typedef typename MetricType::Pointer                                      MetricTypePointer;

  /** Derivative type */
  typedef typename MetricType::DerivativeType                DerivativeType;

  /** Number of parameters type */
  typedef typename MetricType::NumberOfParametersType        NumberOfParametersType;

  /** Measure type */
  typedef typename MetricType::MeasureType                   MeasureType;

  /** Stop condition return string type */
  typedef std::string         StopConditionReturnStringType;

  /** Stop condition internal string type */
  typedef std::ostringstream  StopConditionDescriptionType;

  /** Accessors for Metric */
  itkSetObjectMacro( Metric, MetricType );
  itkGetModifiableObjectMacro(Metric, MetricType );

  /** Accessor for metric value. Returns the value
   *  stored in m_CurrentMetricValue from the most recent
   *  call to evaluate the metric. */
  itkGetConstReferenceMacro( CurrentMetricValue, MeasureType );

  /** Deprecated accessor for currently stored metric value for use
   *  by classes that support both v4 and v3 optimizers.
   *
   *  \sa GetCurrentMetricValue()
   */
  virtual const MeasureType & GetValue() const;

  /** Set current parameters scaling. */
  //itkSetMacro( Scales, ScalesType );
  virtual void SetScales(const ScalesType & scales)
  {
  this->m_Scales = scales;
  }

  /** Get current parameters scaling. */
  itkGetConstReferenceMacro( Scales, ScalesType );

  /** Get whether scales are identity. Cannot be set */
  itkGetConstReferenceMacro( ScalesAreIdentity, bool );

  /** Set current parameters weights. */
  itkSetMacro( Weights, ScalesType );

  /** Get current parameters weights. This will return an
   * empty array when weights have not been set by user. */
  itkGetConstReferenceMacro( Weights, ScalesType );

  /** Get whether weights are identity. Cannot be set */
  itkGetConstReferenceMacro( WeightsAreIdentity, bool );

  /** Get whether the scales have been set. Returns
   *  true if <tt> m_Scales.Size() > 0 </tt> */
  bool GetScalesInitialized() const;

  /** Set the scales estimator.
   *
   *  A ScalesEstimator is required for the scales estimation
   *  options to work. See the main documentation.
   *  Derived classes may also provide learning-rate estimation,
   *  in which case a scales estimator is also required.
   *
   * \sa SetDoEstimateScales()
   */
  itkSetObjectMacro(ScalesEstimator, ScalesEstimatorType);

  /** Option to use ScalesEstimator for scales estimation.
   * The estimation is performed once at begin of
   * optimization, and overrides any scales set using SetScales().
   * Default is true.
   */
  itkSetMacro(DoEstimateScales, bool);
  itkGetConstReferenceMacro(DoEstimateScales, bool);
  itkBooleanMacro(DoEstimateScales);

  /** Set the number of threads to use when threading.
   * The default is the global default number of threads
   * returned from itkMultiThreader. */
  virtual void SetNumberOfThreads( ThreadIdType number );

  /** Get the number of threads set to be used. */
  itkGetConstReferenceMacro( NumberOfThreads, ThreadIdType );

  /** Return current number of iterations. */
  itkGetConstMacro(CurrentIteration, SizeValueType);

  /** Set the number of iterations. */
  itkSetMacro(NumberOfIterations, SizeValueType);

  /** Get the number of iterations. */
  itkGetConstMacro(NumberOfIterations, SizeValueType);

  /** Get a reference to the current position of the optimization.
   * This returns the parameters from the assigned metric, since the optimizer
   * itself does not store a position. */
  virtual const ParametersType & GetCurrentPosition() const;

  /** Run the optimization.
   * \param doOnlyInitialization This is false by default. It should only be
   * set to true for special cases when the class should be initialized to
   * perform optimization, but no optimization should be run. For example,
   * itkMultiGradientOptimizerv4 needs to do this.
   * \note Derived classes must override and call this superclass method, then
   * perform any additional initialization before performing optimization. */
  virtual void StartOptimization( bool doOnlyInitialization = false );

  /** Stop condition return string type */
  virtual const StopConditionReturnStringType GetStopConditionDescription() const = 0;

protected:

  /** Default constructor */
  ObjectToObjectOptimizerBaseTemplate();
  virtual ~ObjectToObjectOptimizerBaseTemplate();

  MetricTypePointer             m_Metric;
  ThreadIdType                  m_NumberOfThreads;
  SizeValueType                 m_CurrentIteration;
  SizeValueType                 m_NumberOfIterations;

  /** Metric measure value at a given iteration, as most recently evaluated. */
  MeasureType                   m_CurrentMetricValue;

  /** Scales. Size is expected to be == metric->GetNumberOfLocalParameters().
   * See the main documentation for more details. */
  ScalesType                    m_Scales;

  /** Parameter weights. These are applied to local parameters, at the same time
   * as scales. See main documentation.
   * If not set by user, the array remains empty and treated as identity to simplify
   * the reuse of an optimizer with transforms with different numbers of parameters. */
  ScalesType                    m_Weights;

  /** Flag to avoid unnecessary arithmetic when scales are identity. */
  bool                          m_ScalesAreIdentity;

  /** Scales estimator. Optionally provided by user. */
  typename ScalesEstimatorType::Pointer m_ScalesEstimator;

  /** Flag to avoid unnecessary arithmetic when weights are identity. */
  bool                          m_WeightsAreIdentity;

  /** Flag to control use of the ScalesEstimator (if set) for
   * automatic scale estimation during StartOptimization()
   */
  bool                          m_DoEstimateScales;

  virtual void PrintSelf(std::ostream & os, Indent indent) const ITK_OVERRIDE;

private:
  ObjectToObjectOptimizerBaseTemplate( const Self & ) ITK_DELETE_FUNCTION;
  void operator=( const Self& ) ITK_DELETE_FUNCTION;

};

/** This helps to meet backward compatibility */
typedef ObjectToObjectOptimizerBaseTemplate<double> ObjectToObjectOptimizerBase;

} // end namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#include "itkObjectToObjectOptimizerBase.hxx"
#endif

#endif