This file is indexed.

/usr/include/ITK-4.9/itkParticleSwarmOptimizerBase.h is in libinsighttoolkit4-dev 4.9.0-4ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#ifndef itkParticleSwarmOptimizerBase_h
#define itkParticleSwarmOptimizerBase_h

#include "itkSingleValuedNonLinearOptimizer.h"
#include "itkMersenneTwisterRandomVariateGenerator.h"
#include "ITKOptimizersExport.h"

namespace itk
{
/** \class ParticleSwarmOptimizerBase
 * \brief Abstract implementation of a Particle Swarm Optimization (PSO) algorithm.
 *
 * The PSO algorithm was originally presented in:<br>
 * J. Kennedy, R. Eberhart, "Particle Swarm Optimization",
 * Proc. IEEE Int. Neural Networks, 1995.<br>
 *
 * The algorithm is a stochastic global search optimization approach.
 * Optimization is performed by maintaining a swarm of particles that traverse
 * the parameter space, searching for the optimal function value. Associated
 * with each particle are its location and speed, in parameter space.
 *
 * Swarm initialization is performed within the user supplied parameter bounds
 * using either a uniform distribution or a normal distribution centered on
 * the initial parameter values supplied by the user. The search terminates when
 * the maximal number of iterations has been reached or when the change in the
 * best value in the past \f$g\f$ generations is below a threshold and the swarm
 * has collapsed (i.e. best personal particle locations are close to the
 * swarm's best location in parameter space).
 *
 * The actual optimization procedure, updating the swarm, is performed in the
 * subclasses, required to implement the UpdateSwarm() method.
 *
 * NOTE: This implementation only performs minimization.
 *
 * \ingroup Numerics Optimizers
 * \ingroup ITKOptimizers
 */
class ITKOptimizers_EXPORT ParticleSwarmOptimizerBase :
  public SingleValuedNonLinearOptimizer
{
public:
  /** Standard "Self" typedef. */
  typedef ParticleSwarmOptimizerBase          Self;
  typedef SingleValuedNonLinearOptimizer      Superclass;
  typedef SmartPointer<Self>                  Pointer;
  typedef SmartPointer<const Self>            ConstPointer;

  /** Run-time type information (and related methods). */
  itkTypeMacro( ParticleSwarmOptimizerBase, SingleValuedNonLinearOptimizer )

  typedef std::vector< std::pair<ParametersType::ValueType,
                                 ParametersType::ValueType> > ParameterBoundsType;

  struct ParticleData
  {
    ParametersType m_CurrentParameters;
    ParametersType m_CurrentVelocity;
    CostFunctionType::MeasureType m_CurrentValue;
    ParametersType m_BestParameters;
    CostFunctionType::MeasureType m_BestValue;
  };

  typedef std::vector<ParticleData>         SwarmType;
  typedef unsigned int                      NumberOfIterationsType;
  typedef unsigned int                      NumberOfParticlesType;
  typedef unsigned int                      NumberOfGenerationsType;
  typedef CostFunctionType::MeasureType     MeasureType;
  typedef ParametersType::ValueType         ValueType;
  typedef Statistics::MersenneTwisterRandomVariateGenerator
                                            RandomVariateGeneratorType;

  /** Specify whether to initialize the particles using a normal distribution
    * centered on the user supplied initial value or a uniform distribution.
    * If the optimum is expected to be near the initial value it is likely
    * that initializing with a normal distribution will result in faster
    * convergence.*/
  itkSetMacro( InitializeNormalDistribution, bool )
  itkGetMacro( InitializeNormalDistribution, bool )
  itkBooleanMacro( InitializeNormalDistribution )

  /**
   * Specify the initial swarm. Useful for evaluating PSO variants. If the
   * initial swarm is set it will be used. To revert to random initialization
   * (uniform or normal particle distributions) set using an empty swarm.
   */
  void SetInitialSwarm( const SwarmType &initialSwarm );
  void ClearSwarm();

  /**
   * Indicate whether or not to output the swarm information when printing an
   * object. By default this option is turned off as it generates too much
   * information.
   */
  itkSetMacro( PrintSwarm, bool )
  itkGetMacro( PrintSwarm, bool )
  itkBooleanMacro( PrintSwarm )

  /** Start optimization. */
  virtual void StartOptimization( void ) ITK_OVERRIDE;


  /** Set/Get number of particles in the swarm - the maximal number of function
      evaluations is m_MaximalNumberOfIterations*m_NumberOfParticles */
  void SetNumberOfParticles( NumberOfParticlesType n );
  itkGetMacro( NumberOfParticles, NumberOfParticlesType )

  /** Set/Get maximal number of iterations - the maximal number of function
      evaluations is m_MaximalNumberOfIterations*m_NumberOfParticles */
  itkSetMacro( MaximalNumberOfIterations, NumberOfIterationsType )
  itkGetMacro( MaximalNumberOfIterations, NumberOfIterationsType )

  /** Set/Get the number of generations to continue with minimal improvement in
   *  the function value, |f_best(g_i) - f_best(g_k)|<threshold where
   *  k <= i+NumberOfGenerationsWithMinimalImprovement
   *  Minimal value is one.*/
  itkSetMacro( NumberOfGenerationsWithMinimalImprovement, NumberOfGenerationsType )
  itkGetMacro( NumberOfGenerationsWithMinimalImprovement, NumberOfGenerationsType )

  /**Set/Get the parameter bounds. Search for optimal value is inside these
     bounds. NOTE: It is assumed that the first entry is the minimal value,
     second is the maximal value. */
  virtual void SetParameterBounds( ParameterBoundsType & bounds );
  void SetParameterBounds( std::pair<ParametersType::ValueType,
                           ParametersType::ValueType> &bounds,
                           unsigned int n );

  ParameterBoundsType GetParameterBounds() const;

    /** The optimization algorithm will terminate when the function improvement
     *  in the last m_NumberOfGenerationsWithMinimalImprovement generations
     *  is less than m_FunctionConvergenceTolerance and the maximal distance
     *  between particles and the best particle in each dimension is less than
     *  m_ParametersConvergenceTolerance[i] for the specified percentage of the
     *  particles.
     *  That is, we haven't improved the best function value for a while and in
     *  the parameter space most (m%) of our particles attained their best value
     *  close to the swarm's best value.
     *  NOTE: The use of different tolerances for each dimension is desired when
     *         optimizing over non-commensurate parameters (e.g. rotation and
     *         translation). Alternatively, we could use ITK's parameter scaling
     *         approach. The current approach seems more intuitive.
     */
  itkSetMacro( FunctionConvergenceTolerance, MeasureType )
  itkGetMacro( FunctionConvergenceTolerance, MeasureType )
  /**Set parameters convergence tolerance using the same value for all, sz,
     parameters*/
  void SetParametersConvergenceTolerance( ValueType convergenceTolerance,
                                          unsigned int sz );
  itkSetMacro( ParametersConvergenceTolerance, ParametersType )
  itkGetMacro( ParametersConvergenceTolerance, ParametersType )
  itkGetMacro( PercentageParticlesConverged, double )
  itkSetMacro( PercentageParticlesConverged, double )

  /**Set the random number seed for the swarm. Use this method to
   * produce reaptible results, typically, for testing.
   */
  itkSetMacro( Seed, RandomVariateGeneratorType::IntegerType)
  itkGetMacro( Seed, RandomVariateGeneratorType::IntegerType)

  /** Use a specific seed to initialize the random number
    * generator. If On, use m_Seed to seed the random number
    * generator. Default is Off. */
  itkSetMacro( UseSeed, bool )
  itkGetMacro( UseSeed, bool )
  itkBooleanMacro( UseSeed)

  /** Get the function value for the current position.
   *  NOTE: This value is only valid during and after the execution of the
   *        StartOptimization() method.*/
  MeasureType GetValue() const;

  /** Get the reason for termination */
  virtual const std::string GetStopConditionDescription() const ITK_OVERRIDE;

  /** Print the swarm information to the given output stream. Each line
   * (particle data) is of the form:
   * current_parameters current_velocity current_value best_parameters best_value
   */
  void PrintSwarm( std::ostream& os, Indent indent ) const;

protected:
  ParticleSwarmOptimizerBase();
  virtual ~ParticleSwarmOptimizerBase();
  virtual void PrintSelf( std::ostream& os, Indent indent ) const ITK_OVERRIDE;
  void PrintParamtersType(  const ParametersType& x, std::ostream& os ) const;

  /**
   * Implement your update rule in this function.*/
  virtual void UpdateSwarm() = 0;

  ParticleSwarmOptimizerBase( const Self& ) ITK_DELETE_FUNCTION;
  void operator=( const Self& ) ITK_DELETE_FUNCTION;

  virtual void ValidateSettings();

  /**
   * Initialize the particle swarm, and seed the random number generator.
   */
  virtual void Initialize();

  void RandomInitialization();
  void FileInitialization();

  bool                                         m_PrintSwarm;
  std::ostringstream                           m_StopConditionDescription;
  bool                                         m_InitializeNormalDistribution;
  NumberOfParticlesType                        m_NumberOfParticles;
  NumberOfIterationsType                       m_MaximalNumberOfIterations;
  NumberOfGenerationsType                      m_NumberOfGenerationsWithMinimalImprovement;
  ParameterBoundsType                          m_ParameterBounds;
  ParametersType                               m_ParametersConvergenceTolerance;
  double                                       m_PercentageParticlesConverged;
  CostFunctionType::MeasureType                m_FunctionConvergenceTolerance;
  std::vector<ParticleData>                    m_Particles;
  CostFunctionType::MeasureType                m_FunctionBestValue;
  std::vector<MeasureType>                     m_FunctionBestValueMemory;
  ParametersType                               m_ParametersBestValue;
  NumberOfIterationsType                       m_IterationIndex;
  RandomVariateGeneratorType::IntegerType      m_Seed;
  bool                                         m_UseSeed;
};
} // end namespace itk

#endif