/usr/include/ITK-4.9/itkPeriodicBoundaryCondition.hxx is in libinsighttoolkit4-dev 4.9.0-4ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 | /*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkPeriodicBoundaryCondition_hxx
#define itkPeriodicBoundaryCondition_hxx
#include "itkConstNeighborhoodIterator.h"
#include "itkPeriodicBoundaryCondition.h"
namespace itk
{
template< typename TInputImage, typename TOutputImage >
typename PeriodicBoundaryCondition< TInputImage, TOutputImage >::OutputPixelType
PeriodicBoundaryCondition< TInputImage, TOutputImage >
::operator()(const OffsetType & point_index, const OffsetType & boundary_offset,
const NeighborhoodType *data) const
{
const ConstNeighborhoodIterator< TInputImage > *iterator =
dynamic_cast< const ConstNeighborhoodIterator< TInputImage > * >( data );
typename TInputImage::PixelType * ptr;
int linear_index = 0;
unsigned int i;
// Find the pointer of the closest boundary pixel
// Return the value of the pixel at the closest boundary point.
for ( i = 0; i < ImageDimension; ++i )
{
linear_index += ( point_index[i] + boundary_offset[i] ) * data->GetStride(i);
}
// (data->operator[](linear_index)) is guaranteed to be a pointer to
// TInputImage::PixelType except for VectorImage, in which case, it will be a
// pointer to TInputImage::InternalPixelType.
ptr = reinterpret_cast< PixelType * >( ( data->operator[](linear_index) ) );
// Wrap the pointer around the image in the necessary dimensions. If we have
// reached this point, we can assume that we are on the edge of the BUFFERED
// region of the image. Boundary conditions are only invoked if touching the
// actual memory boundary.
// These are the step sizes for increments in each dimension of the image.
const typename TInputImage::OffsetValueType * offset_table =
iterator->GetImagePointer()->GetOffsetTable();
for ( i = 0; i < ImageDimension; ++i )
{
if ( boundary_offset[i] != 0 )
{ // If the neighborhood overlaps on the low edge, then wrap from the
// high edge of the image.
if ( point_index[i] < static_cast< OffsetValueType >( iterator->GetRadius(i) ) )
{
ptr += iterator->GetImagePointer()->GetBufferedRegion().GetSize()[i]
* offset_table[i] - boundary_offset[i] * offset_table[i];
}
else // wrap from the low side of the image
{
ptr -= iterator->GetImagePointer()->GetBufferedRegion().GetSize()[i]
* offset_table[i] + boundary_offset[i] * offset_table[i];
}
}
}
return static_cast< OutputPixelType >( *ptr );
}
template< typename TInputImage, typename TOutputImage >
typename PeriodicBoundaryCondition< TInputImage, TOutputImage >::OutputPixelType
PeriodicBoundaryCondition< TInputImage, TOutputImage >
::operator()(const OffsetType & point_index, const OffsetType & boundary_offset,
const NeighborhoodType *data,
const NeighborhoodAccessorFunctorType & neighborhoodAccessorFunctor) const
{
const ConstNeighborhoodIterator< TInputImage > *iterator =
dynamic_cast< const ConstNeighborhoodIterator< TInputImage > * >( data );
typename TInputImage::InternalPixelType * ptr;
int linear_index = 0;
unsigned int i;
// Find the pointer of the closest boundary pixel
// std::cout << "Boundary offset = " << boundary_offset << std::endl;
// std::cout << "point index = " << point_index << std::endl;
// Return the value of the pixel at the closest boundary point.
for ( i = 0; i < ImageDimension; ++i )
{
linear_index += ( point_index[i] + boundary_offset[i] ) * data->GetStride(i);
}
ptr = data->operator[](linear_index);
// Wrap the pointer around the image in the necessary dimensions. If we have
// reached this point, we can assume that we are on the edge of the BUFFERED
// region of the image. Boundary conditions are only invoked if touching the
// actual memory boundary.
// These are the step sizes for increments in each dimension of the image.
const typename TInputImage::OffsetValueType * offset_table =
iterator->GetImagePointer()->GetOffsetTable();
for ( i = 0; i < ImageDimension; ++i )
{
if ( boundary_offset[i] != 0 )
{ // If the neighborhood overlaps on the low edge, then wrap from the
// high edge of the image.
if ( point_index[i] < static_cast< OffsetValueType >( iterator->GetRadius(i) ) )
{
ptr += iterator->GetImagePointer()->GetBufferedRegion().GetSize()[i]
* offset_table[i] - boundary_offset[i] * offset_table[i];
}
else // wrap from the low side of the image
{
ptr -= iterator->GetImagePointer()->GetBufferedRegion().GetSize()[i]
* offset_table[i] + boundary_offset[i] * offset_table[i];
}
}
}
return static_cast< OutputPixelType >( neighborhoodAccessorFunctor.Get(ptr) );
}
template< typename TInputImage, typename TOutputImage >
typename PeriodicBoundaryCondition< TInputImage, TOutputImage >::RegionType
PeriodicBoundaryCondition< TInputImage, TOutputImage >
::GetInputRequestedRegion( const RegionType & inputLargestPossibleRegion,
const RegionType & outputRequestedRegion ) const
{
IndexType imageIndex = inputLargestPossibleRegion.GetIndex();
SizeType imageSize = inputLargestPossibleRegion.GetSize();
IndexType outputIndex = outputRequestedRegion.GetIndex();
SizeType outputSize = outputRequestedRegion.GetSize();
IndexType inputRequestedIndex;
SizeType inputRequestedSize;
for ( unsigned int i = 0; i < ImageDimension; ++i )
{
// Check for image boundary overlap in the requested region
IndexValueType lowIndex =
( ( outputIndex[i] - imageIndex[i] ) % static_cast< IndexValueType >( imageSize[i] ) );
if ( lowIndex < 0 )
{
lowIndex += static_cast< IndexValueType >( imageSize[i] );
}
IndexValueType highIndex = lowIndex + static_cast< IndexValueType >( outputSize[i] );
bool overlap = ( highIndex >= static_cast< IndexValueType >( imageSize[i] ) );
if ( overlap )
{
// Request the totality of the image in this dimension
inputRequestedIndex[i] = imageIndex[i];
inputRequestedSize[i] = imageSize[i];
}
else
{
// Remap the requested portion in this dimension into the image region.
inputRequestedIndex[i] = lowIndex;
inputRequestedSize[i] = outputSize[i];
}
}
RegionType inputRequestedRegion( inputRequestedIndex, inputRequestedSize );
return inputRequestedRegion;
}
template< typename TInputImage, typename TOutputImage >
typename PeriodicBoundaryCondition< TInputImage, TOutputImage >::OutputPixelType
PeriodicBoundaryCondition< TInputImage, TOutputImage >
::GetPixel( const IndexType & index, const TInputImage * image ) const
{
RegionType imageRegion = image->GetLargestPossibleRegion();
IndexType imageIndex = imageRegion.GetIndex();
SizeType imageSize = imageRegion.GetSize();
IndexType lookupIndex;
for ( unsigned int i = 0; i < ImageDimension; ++i )
{
IndexValueType modIndex = ( ( index[i] - imageIndex[i] ) %
static_cast< IndexValueType >( imageSize[i] ) );
if ( modIndex < 0 )
{
modIndex += static_cast< IndexValueType >( imageSize[i] );
}
lookupIndex[i] = modIndex + imageIndex[i];
}
return static_cast< OutputPixelType >( image->GetPixel( lookupIndex ) );
}
} // end namespace itk
#endif
|