This file is indexed.

/usr/include/ITK-4.9/itkPoint.h is in libinsighttoolkit4-dev 4.9.0-4ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkPoint_h
#define itkPoint_h


#include "itkNumericTraits.h"
#include "itkVector.h"

#include "vnl/vnl_vector_ref.h"
#include "itkMath.h"

namespace itk
{
/** \class Point
 * \brief A templated class holding a geometric point in n-Dimensional space.
 *
 * Point is a templated class that holds a set of coordinates (components).
 * Point can be used as the data type held at each pixel in
 * an Image or at each vertex of an Mesh. The template parameter T can
 * be any data type that behaves like a primitive (or atomic) data type (int,
 * short, float, complex).  The NPointDimension defines the number of
 * components in the point array.
 *
 * \ingroup Geometry
 * \ingroup DataRepresentation
 *
 * \sa Image \sa Mesh \sa Vector \sa CovariantVector \sa Matrix
 * \ingroup ITKCommon
 *
 * \wiki
 * \wikiexample{SimpleOperations/DistanceBetweenPoints,Distance between two points}
 * \wikiexample{SimpleOperations/DistanceBetweenIndices,Distance between two indices}
 * \endwiki
 */
template< typename TCoordRep, unsigned int NPointDimension = 3 >
class Point:public FixedArray< TCoordRep, NPointDimension >
{
public:
  /** Standard class typedefs. */
  typedef Point                                    Self;
  typedef FixedArray< TCoordRep, NPointDimension > Superclass;

  /** ValueType can be used to declare a variable that is the same type
   * as a data element held in an Point.   */
  typedef TCoordRep ValueType;
  typedef TCoordRep CoordRepType;

  typedef typename NumericTraits< ValueType >::RealType RealType;

  /** Dimension of the Space */
  itkStaticConstMacro(PointDimension, unsigned int, NPointDimension);

  /** The Array type from which this Vector is derived. */
  typedef FixedArray< TCoordRep, NPointDimension > BaseArray;
  typedef typename BaseArray::Iterator             Iterator;
  typedef typename BaseArray::ConstIterator        ConstIterator;

  /** Get the dimension (size) of the point. */
  static unsigned int GetPointDimension()
  { return NPointDimension; }

  /** VectorType define the difference between two Points */
  typedef Vector< ValueType, NPointDimension > VectorType;

  /** Default constructor has nothing to do. */
  Point() {}

  /** Pass-through constructors for the Array base class. */
  template< typename TPointValueType >
  Point(const Point< TPointValueType, NPointDimension > & r):BaseArray(r) {}
  template< typename TPointValueType >
  Point(const TPointValueType r[NPointDimension]):BaseArray(r) {}
  Point(const ValueType r[NPointDimension]):BaseArray(r) {}
  template< typename TPointValueType >
  Point(const TPointValueType & v):BaseArray(v) {}
  Point(const ValueType & v):BaseArray(v) {}

  /** Pass-through assignment operator for the Array base class. */
  Point & operator=(const Self & r);

  Point & operator=(const ValueType r[NPointDimension]);

  /** Compare two points for equality. */
  bool
  operator==(const Self & pt) const
  {
    bool same = true;

    for ( unsigned int i = 0; i < NPointDimension && same; ++i )
          { same = ( Math::ExactlyEquals(( *this )[i], pt[i]) ); }
    return same;
  }

  /** Compare two points for inequality. */
  bool
  operator!=(const Self & pt) const
  {
    bool same = true;

    for ( unsigned int i = 0; i < NPointDimension && same; ++i )
          { same = ( Math::ExactlyEquals(( *this )[i], pt[i]) ); }
    return !same;
  }

  /** Point operator+=.  Adds a vector to the current point. */
  const Self & operator+=(const VectorType & vec);

  /** Point operator-=.  Subtracts a vector from a current point. */
  const Self & operator-=(const VectorType & vec);

  /** Computes the Vector difference between two points */
  VectorType operator-(const Self & pnt) const;

  /** Add a vector to a point. Return a new point. */
  Self operator+(const VectorType & vec) const;

  /** Subtract a vector from a point. Return a new point. */
  Self operator-(const VectorType & vec) const;

  /** Access an element of a point. */
  VectorType GetVectorFromOrigin() const;

  /** Get a vnl_vector_ref referencing the same memory block */
  vnl_vector_ref< TCoordRep > GetVnlVector();

  /** Get a vnl_vector with a copy of the internal memory block. */
  vnl_vector< TCoordRep > GetVnlVector() const;

  /** Get a vnl_vector_ref referencing the same memory block
   * \deprecated Use GetVnlVector() instead. */
  itkLegacyMacro(vnl_vector_ref< TCoordRep > Get_vnl_vector(void));

  /** Get a vnl_vector with a copy of the internal memory block.
   * \deprecated Use GetVnlVector() instead. */
  itkLegacyMacro(vnl_vector< TCoordRep > Get_vnl_vector(void) const);

  /** Set to median point between the two points
   * given as arguments
   *
   * This method computes:
   *
   * \f[
   *   \overrightarrow{P}=\frac{(\overrightarrow{A}+\overrightarrow{B})}{2}
   * \f]
   *
   * using the two Points given as arguments, and store the result in
   * the Point on which the method is invoked. */
  void SetToMidPoint(const Self &, const Self &);

  /** Set the current point to a barycentric combination of the two points
   * given as arguments.
   *
   * \param A First point
   * \param B Second point
   * \param alpha Weight for the first point
   *
   * The first point is multiplied by \f$ \alpha \f$, the second is multiplied
   * by * \f$ (1-\alpha) \f$, and the sum is stored in the Point on which the
   * method is invoked.
   *
   * \f[
   *   \overrightarrow{P}=\alpha * \overrightarrow{A}+ (1-\alpha)*\overrightarrow{B}
   * \f]
   *
   * If the value of \f$ \alpha \in [0,1] \f$, the resulting point will be placed
   * in the line segment \f$ \overline{AB} \f$ joining  \f$ \overrightarrow{A} \f$
   * and \f$  \overrightarrow{A} \f$
   *
   * If the value of \f$ \alpha < 0 \f$ the resulting point will be placed outside
   * the line segment   \f$ \overline{AB} \f$ on the side of \f$ \overrightarrow{A} \f$.
   *
   * If the value of \f$ \alpha > 1 \f$ the resulting point will be placed outside
   * the line segment   \f$ \overline{AB} \f$ on the side of \f$ \overrightarrow{B} \f$.
   *
   * \sa SetToMedian */
  void SetToBarycentricCombination(const Self & A, const Self & B, double alpha);

  /** Set the current point to a barycentric combination of three points
   * Two values are expected to weight the contribution of the first two points,
   * the weight of for the third point is computed to ensure that the three weights
   * sum 1.
   *
   * This method computes:
   *
   * \f[
   *   \overrightarrow{P}=     w_1        * \overrightarrow{P}_1
                          +    w_2        * \overrightarrow{P}_2
                          +  (1-w_1-w_2 ) * \overrightarrow{P}_3
   * \f]
   *
   * If the two weight are \f$ \in [0,1] \f$ , The resulting point will alway be placed
   * inside the triangle formed by the three points given as arguments. */
  void SetToBarycentricCombination(const Self & A, const Self & B, const Self & C,
                                   double weightA,  double weightB);

  /** Set the current point to a barycentric combination of an array of N points
   * An array of (N-1) values is expected to weight the contribution of the
   * first (N-1) points, the weight of the Nth point is computed to ensure that
   * the N weights sum 1.
   *
   * This method computes:
   *
   * \f[
   *   \overrightarrow{P}=    \sum_{i=1}^{N-1} w_i * \overrightarrow{P}_i
          +   \left(1- \sum_{i=1}^{N-1} w_i\right) * \overrightarrow{P}_N
   * \f]
   */
  void SetToBarycentricCombination(const Self *P, const double *weights, unsigned int N);

  /** Copy from another Point with a different representation type.
   *  Casting is done with C-Like rules  */
  template< typename TCoordRepB >
  void CastFrom(const Point< TCoordRepB, NPointDimension > & pa)
  {
    for ( unsigned int i = 0; i < NPointDimension; i++ )
      {
      ( *this )[i] = static_cast< TCoordRep >( pa[i] );
      }
  }

  /** Compute the Squared Euclidean Distance from this point to another point
    * with a different representation type.  Casting is done with
    * C-Like rules */

  template< typename TCoordRepB >
  RealType SquaredEuclideanDistanceTo(const Point< TCoordRepB, NPointDimension > & pa) const
  {
    RealType sum = NumericTraits< RealType >::ZeroValue();

    for ( unsigned int i = 0; i < NPointDimension; i++ )
      {
      const RealType component =  static_cast< RealType >( pa[i] );
      const RealType difference = static_cast< RealType >( ( *this )[i] ) - component;
      sum += difference * difference;
      }
    return sum;
  }

  /** Compute the Euclidean Distance from this point to another point
    * with a different representation type.  Casting is done with
    * C-Like rules */
  template< typename TCoordRepB >
  RealType EuclideanDistanceTo(const Point< TCoordRepB, NPointDimension > & pa) const
  {
    const double distance = std::sqrt(
      static_cast< double >( this->SquaredEuclideanDistanceTo(pa) ) );

    return static_cast< RealType >( distance );
  }
};

template< typename T, unsigned int NPointDimension >
std::ostream & operator<<(std::ostream & os,
                                     const Point< T, NPointDimension > & v);

template< typename T, unsigned int NPointDimension >
std::istream & operator>>(std::istream & is,
                                     Point< T, NPointDimension > & v);

/** \class BarycentricCombination
 *  \brief Computes the barycentric combination of an array of N points.
 *
 * This class computes the barycentric combination of an array of N points.
 *
 * An array of (N-1) values is expected to weight the contribution of the
 * first (N-1) points, the weight of the Nth point is computed to ensure that
 * the N weights sum 1.
 *
 * This method computes:
 *
 * \f[
 *   \overrightarrow{P}=    \sum_{i=1}^{N-1} w_i * \overrightarrow{P}_i
 *      +   \left(1- \sum_{i=1}^{N-1} w_i\right) * \overrightarrow{P}_N
 * \f]
 *
 * The points are expected to be stored in an itkContainer class like
 * itk::VectorContainer, responding to the Begin(), End(), Value() API.
 *
 * The weights are expected to be stored in any array-like container
 * having a operator[i].
 *
 * \ingroup Geometry
 * \ingroup ITKCommon
 */
template< typename TPointContainer, typename TWeightContainer >
class BarycentricCombination
{
public:
  /** Convenient typedefs. */
  typedef TPointContainer                      PointContainerType;
  typedef typename PointContainerType::Pointer PointContainerPointer;
  typedef typename PointContainerType::Element PointType;
  typedef TWeightContainer                     WeightContainerType;

  BarycentricCombination() {}
  ~BarycentricCombination() {}

  static PointType Evaluate(
    const PointContainerPointer & points,
    const WeightContainerType & weights);
};
}  // end namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#include "itkPoint.hxx"
#endif

#endif