This file is indexed.

/usr/include/ITK-4.9/itkRegionBasedLevelSetFunction.h is in libinsighttoolkit4-dev 4.9.0-4ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkRegionBasedLevelSetFunction_h
#define itkRegionBasedLevelSetFunction_h

#include "itkFiniteDifferenceFunction.h"
#include "itkRegularizedHeavisideStepFunction.h"
#include "vnl/vnl_matrix_fixed.h"

namespace itk
{
/** \class RegionBasedLevelSetFunction
 *
 * \brief LevelSet function that computes a speed image based on regional integrals
 *
 * This class implements a level set function that computes the speed image by
 * integrating values on the image domain.
 *
 * Based on the paper:
 *
 *        "An active contour model without edges"
 *         T. Chan and L. Vese.
 *         In Scale-Space Theories in Computer Vision, pages 141-151, 1999.
 *
 * \author Mosaliganti K., Smith B., Gelas A., Gouaillard A., Megason S.
 *
 *  This code was taken from the Insight Journal paper:
 *
 *      "Cell Tracking using Coupled Active Surfaces for Nuclei and Membranes"
 *      http://www.insight-journal.org/browse/publication/642
 *      http://hdl.handle.net/10380/3055
 *
 *  That is based on the papers:
 *
 *      "Level Set Segmentation: Active Contours without edge"
 *      http://www.insight-journal.org/browse/publication/322
 *      http://hdl.handle.net/1926/1532
 *
 *      and
 *
 *      "Level set segmentation using coupled active surfaces"
 *      http://www.insight-journal.org/browse/publication/323
 *      http://hdl.handle.net/1926/1533
 *
 * NOTE: The convention followed is
 * inside of the level-set function is negative and outside is positive.
 * \ingroup ITKReview
 */
template< typename TInput,   // LevelSetImageType
          typename TFeature, // FeatureImageType
          typename TSharedData >
class RegionBasedLevelSetFunction:public
  FiniteDifferenceFunction< TInput >
{
public:
  /** Standard class typedefs. */
  typedef RegionBasedLevelSetFunction        Self;
  typedef FiniteDifferenceFunction< TInput > Superclass;
  typedef SmartPointer< Self >               Pointer;
  typedef SmartPointer< const Self >         ConstPointer;

  itkStaticConstMacro(ImageDimension, unsigned int, Superclass::ImageDimension);

  // itkNewMacro() is not provided since this is an abstract class.

  /** Run-time type information (and related methods) */
  itkTypeMacro(RegionBasedLevelSetFunction, FiniteDifferenceFunction);

  /** Extract some parameters from the superclass. */
  typedef double                                      TimeStepType;
  typedef typename Superclass::ImageType              ImageType;
  typedef typename Superclass::PixelType              PixelType;
  typedef PixelType                                   ScalarValueType;
  typedef typename Superclass::RadiusType             RadiusType;
  typedef typename Superclass::NeighborhoodType       NeighborhoodType;
  typedef typename Superclass::NeighborhoodScalesType NeighborhoodScalesType;
  typedef typename Superclass::FloatOffsetType        FloatOffsetType;
  typedef FixedArray< ScalarValueType, itkGetStaticConstMacro(ImageDimension) >
  VectorType;

  /* This structure is derived from LevelSetFunction and stores intermediate
  values for computing time step sizes */
  struct GlobalDataStruct {
    GlobalDataStruct()
    {
      ScalarValueType null_value = NumericTraits< ScalarValueType >::ZeroValue();

      m_MaxCurvatureChange   = null_value;
      m_MaxAdvectionChange   = null_value;
      m_MaxGlobalChange      = null_value;
    }

    ~GlobalDataStruct() {}

    vnl_matrix_fixed< ScalarValueType,
                      itkGetStaticConstMacro(ImageDimension),
                      itkGetStaticConstMacro(ImageDimension) > m_dxy;

    ScalarValueType m_dx[itkGetStaticConstMacro(ImageDimension)];

    ScalarValueType m_dx_forward[itkGetStaticConstMacro(ImageDimension)];
    ScalarValueType m_dx_backward[itkGetStaticConstMacro(ImageDimension)];

    ScalarValueType m_GradMagSqr;
    ScalarValueType m_GradMag;

    ScalarValueType m_MaxCurvatureChange;
    ScalarValueType m_MaxAdvectionChange;
    ScalarValueType m_MaxGlobalChange;
  };

  typedef TInput                                  InputImageType;
  typedef typename InputImageType::ConstPointer   InputImageConstPointer;
  typedef typename InputImageType::Pointer        InputImagePointer;
  typedef typename InputImageType::PixelType      InputPixelType;
  typedef typename InputImageType::IndexType      InputIndexType;
  typedef typename InputImageType::IndexValueType InputIndexValueType;
  typedef typename InputImageType::SizeType       InputSizeType;
  typedef typename InputImageType::SizeValueType  InputSizeValueType;
  typedef typename InputImageType::RegionType     InputRegionType;
  typedef typename InputImageType::PointType      InputPointType;

  typedef TFeature                                FeatureImageType;
  typedef typename FeatureImageType::ConstPointer FeatureImageConstPointer;
  typedef typename FeatureImageType::PixelType    FeaturePixelType;
  typedef typename FeatureImageType::IndexType    FeatureIndexType;
  typedef typename FeatureImageType::SpacingType  FeatureSpacingType;
  typedef typename FeatureImageType::OffsetType   FeatureOffsetType;

  typedef TSharedData                      SharedDataType;
  typedef typename SharedDataType::Pointer SharedDataPointer;

  typedef HeavisideStepFunctionBase< InputPixelType, InputPixelType > HeavisideFunctionType;
  typedef typename HeavisideFunctionType::ConstPointer                HeavisideFunctionConstPointer;

  void SetDomainFunction(const HeavisideFunctionType *f)
  {
    this->m_DomainFunction = f;
  }

  virtual void Initialize(const RadiusType & r)
  {
    this->SetRadius(r);

    // Dummy neighborhood.
    NeighborhoodType it;
    it.SetRadius(r);

    // Find the center index of the neighborhood.
    m_Center =  it.Size() / 2;

    // Get the stride length for each axis.
    for ( unsigned int i = 0; i < ImageDimension; i++ )
      {
      m_xStride[i] = it.GetStride(i);
      }
  }

#if !defined( ITK_WRAPPING_PARSER )
  void SetSharedData(SharedDataPointer sharedDataIn)
  {
    this->m_SharedData = sharedDataIn;
  }
#endif

  void UpdateSharedData(bool forceUpdate);

  void * GetGlobalDataPointer() const ITK_OVERRIDE
  {
    return new GlobalDataStruct;
  }

  TimeStepType ComputeGlobalTimeStep(void *GlobalData) const ITK_OVERRIDE;

  /** Compute the equation value. */
  virtual PixelType ComputeUpdate( const NeighborhoodType & neighborhood,
                                   void *globalData, const FloatOffsetType & = FloatOffsetType(0.0) ) ITK_OVERRIDE;

  void SetInitialImage(InputImageType *f)
  {
    m_InitialImage = f;
  }

  virtual const FeatureImageType * GetFeatureImage() const
  { return m_FeatureImage.GetPointer(); }
  virtual void SetFeatureImage(const FeatureImageType *f)
  {
    m_FeatureImage = f;

    FeatureSpacingType spacing = m_FeatureImage->GetSpacing();
    for ( unsigned int i = 0; i < ImageDimension; i++ )
      {
      this->m_InvSpacing[i] = 1 / spacing[i];
      }
  }

  /** Advection field.  Default implementation returns a vector of zeros. */
  virtual VectorType AdvectionField(const NeighborhoodType &,
                                    const FloatOffsetType &, GlobalDataStruct * = 0)  const
  { return this->m_ZeroVectorConstant; }

  /** Nu. Area regularization values */
  void SetAreaWeight(const ScalarValueType & nu)
  { this->m_AreaWeight = nu; }
  ScalarValueType GetAreaWeight() const
  { return this->m_AreaWeight; }

  /** Lambda1. Internal intensity difference weight */
  void SetLambda1(const ScalarValueType & lambda1)
  { this->m_Lambda1 = lambda1; }
  ScalarValueType GetLambda1() const
  { return this->m_Lambda1; }

  /** Lambda2. External intensity difference weight */
  void SetLambda2(const ScalarValueType & lambda2)
  { this->m_Lambda2 = lambda2; }
  ScalarValueType GetLambda2() const
  { return this->m_Lambda2; }

  /** Gamma. Overlap penalty */
  void SetOverlapPenaltyWeight(const ScalarValueType & gamma)
  { this->m_OverlapPenaltyWeight = gamma; }
  ScalarValueType GetOverlapPenaltyWeight() const
  { return this->m_OverlapPenaltyWeight; }

  /** Gamma. Scales all curvature weight values */
  virtual void SetCurvatureWeight(const ScalarValueType c)
  { m_CurvatureWeight = c; }
  ScalarValueType GetCurvatureWeight() const
  { return m_CurvatureWeight; }

  void SetAdvectionWeight(const ScalarValueType & iA)
  { this->m_AdvectionWeight = iA; }
  ScalarValueType GetAdvectionWeight() const
  { return this->m_AdvectionWeight; }

  /** Weight of the laplacian smoothing term */
  void SetReinitializationSmoothingWeight(const ScalarValueType c)
  { m_ReinitializationSmoothingWeight = c; }
  ScalarValueType GetReinitializationSmoothingWeight() const
  { return m_ReinitializationSmoothingWeight; }

  /** Volume matching weight.  */
  void SetVolumeMatchingWeight(const ScalarValueType & tau)
  { this->m_VolumeMatchingWeight = tau; }
  ScalarValueType GetVolumeMatchingWeight() const
  { return this->m_VolumeMatchingWeight; }

  /** Pixel Volume = Number of pixels inside the level-set  */
  void SetVolume(const ScalarValueType & volume)
  { this->m_Volume = volume; }
  ScalarValueType GetVolume() const
  { return this->m_Volume; }

  /** Set function id.  */
  void SetFunctionId(const unsigned int & iFid)
  { this->m_FunctionId = iFid; }

  virtual void ReleaseGlobalDataPointer(void *GlobalData) const ITK_OVERRIDE
  { delete (GlobalDataStruct *)GlobalData; }

  virtual ScalarValueType ComputeCurvature(const NeighborhoodType &,
                                           const FloatOffsetType &, GlobalDataStruct *gd);

  /** \brief Laplacian smoothing speed can be used to spatially modify the
    effects of laplacian smoothing of the level set function */
  virtual ScalarValueType LaplacianSmoothingSpeed(
    const NeighborhoodType &,
    const FloatOffsetType &, GlobalDataStruct * = 0) const
  { return NumericTraits< ScalarValueType >::OneValue(); }

  /** \brief Curvature speed can be used to spatially modify the effects of
    curvature . The default implementation returns one. */
  virtual ScalarValueType CurvatureSpeed(const NeighborhoodType &,
                                         const FloatOffsetType &, GlobalDataStruct * = 0
                                         ) const
  { return NumericTraits< ScalarValueType >::OneValue(); }

  /** This method must be defined in a subclass to implement a working function
   * object.  This method is called before the solver begins its work to
   * produce the speed image used as the level set function's Advection field
   * term.  See LevelSetFunction for more information. */
  virtual void CalculateAdvectionImage() {}

protected:

  RegionBasedLevelSetFunction();
  virtual ~RegionBasedLevelSetFunction() {}

  /** The initial level set image */
  InputImageConstPointer m_InitialImage;

  /** The feature image */
  FeatureImageConstPointer m_FeatureImage;

  SharedDataPointer m_SharedData;

  HeavisideFunctionConstPointer m_DomainFunction;

  /** Area regularization weight */
  ScalarValueType m_AreaWeight;

  /** Internal functional of the level set weight */
  ScalarValueType m_Lambda1;

  /** External functional of the level set weight */
  ScalarValueType m_Lambda2;

  /** Overlap Penalty Weight */
  ScalarValueType m_OverlapPenaltyWeight;

  /** Volume Regularization Weight */
  ScalarValueType m_VolumeMatchingWeight;

  /** Volume Constraint in pixels */
  ScalarValueType m_Volume;

  /** Curvature Regularization Weight */
  ScalarValueType m_CurvatureWeight;

  ScalarValueType m_AdvectionWeight;

  /** Laplacian Regularization Weight */
  ScalarValueType m_ReinitializationSmoothingWeight;

  unsigned int m_FunctionId;

  std::slice x_slice[itkGetStaticConstMacro(ImageDimension)];
  OffsetValueType m_Center;
  OffsetValueType m_xStride[itkGetStaticConstMacro(ImageDimension)];
  double m_InvSpacing[itkGetStaticConstMacro(ImageDimension)];

  static double m_WaveDT;
  static double m_DT;

  void ComputeHImage();

  /** \brief Compute the global term as a combination of the internal, external,
    overlapping and volume regularization terms.  */
  ScalarValueType ComputeGlobalTerm(
    const ScalarValueType & imagePixel,
    const InputIndexType & inputIndex);

  /** \brief Compute the internal term
  \param[in] iValue Feature Image Value
  \param[in] iIdx Feature Image Index
  */
  virtual ScalarValueType ComputeInternalTerm(const FeaturePixelType & iValue,
                                              const FeatureIndexType & iIdx) = 0;

  /** \brief Compute the external term
  \param[in] iValue Feature Image Value
  \param[in] iIdx Feature Image Index */
  virtual ScalarValueType ComputeExternalTerm(const FeaturePixelType & iValue,
                                              const FeatureIndexType & iIdx) = 0;

  /** \brief Compute the overlap term
  \param[in] featIndex
  \param[out] pr = \f$ \prod_{i \neq j} H(\phi_i)\f$
  \return OverlapTerm = \f$ \sum_{i \neq j} H(\phi_i)\f$ */
  virtual ScalarValueType ComputeOverlapParameters(const FeatureIndexType & featIndex,
                                                   ScalarValueType & pr) = 0;

  /** \brief Compute the overlap term
      \return \f$ \int_{p \in \Omega} H(\phi_i) dp - this->Volume \f$
      \note the volume regularization does not depend on the spacing.
        So the volume must be set in number of pixels (not in real world unit). */
  ScalarValueType ComputeVolumeRegularizationTerm();

  /** \brief Compute the laplacian term
      \return \f$ \Delta \phi - \div(\frac{\nabla \phi}{|\nabla \phi|}) \f$
      For details see

      \par REFERENCE
      Li, C.M. and Xu, C.Y. and Gui, C. and Fox, M.D.
      "Level Set Evolution without Re-Initialization: A New Variational Formulation",
      CVPR05. 2005. pp. 430-436.
  */

  /** \brief Compute the laplacian
  \return \f$ \Delta \phi \f$ */
  ScalarValueType ComputeLaplacian(GlobalDataStruct *gd);

  /** \brief Compute Hessian Matrix */
  void ComputeHessian(const NeighborhoodType & it,
                      GlobalDataStruct *globalData);

  /** \brief Compute Parameters for the inner and outer parts. */
  virtual void ComputeParameters() = 0;

  /** \brief Update and save the inner and outer parameters in the shared data
    structure. */
  virtual void UpdateSharedDataParameters() = 0;

  bool m_UpdateC;

  /** This method's only purpose is to initialize the zero vector
   * constant. */
  static VectorType InitializeZeroVectorConstant();

  /** Zero vector constant. */
  static VectorType m_ZeroVectorConstant;

private:
  RegionBasedLevelSetFunction(const Self &) ITK_DELETE_FUNCTION;
  void operator=(const Self &) ITK_DELETE_FUNCTION;
};
} // end namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#include "itkRegionBasedLevelSetFunction.hxx"
#endif

#endif