/usr/include/ITK-4.9/itkRegionBasedLevelSetFunction.hxx is in libinsighttoolkit4-dev 4.9.0-4ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 | /*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkRegionBasedLevelSetFunction_hxx
#define itkRegionBasedLevelSetFunction_hxx
#include "itkRegionBasedLevelSetFunction.h"
#include "itkImageRegionIteratorWithIndex.h"
namespace itk
{
template< typename TInput,
typename TFeature,
typename TSharedData >
double
RegionBasedLevelSetFunction< TInput, TFeature, TSharedData >
::m_WaveDT = 1.0 / ( 2.0 * ImageDimension );
template< typename TInput,
typename TFeature,
typename TSharedData >
double
RegionBasedLevelSetFunction< TInput, TFeature, TSharedData >
::m_DT = 1.0 / ( 2.0 * ImageDimension );
template< typename TInput,
typename TFeature,
typename TSharedData >
RegionBasedLevelSetFunction< TInput,
TFeature,
TSharedData >
::RegionBasedLevelSetFunction()
{
m_Lambda1 = NumericTraits< ScalarValueType >::OneValue();
m_Lambda2 = NumericTraits< ScalarValueType >::OneValue();
m_OverlapPenaltyWeight = NumericTraits< ScalarValueType >::ZeroValue();
m_AreaWeight = NumericTraits< ScalarValueType >::ZeroValue();
m_VolumeMatchingWeight = NumericTraits< ScalarValueType >::ZeroValue();
m_ReinitializationSmoothingWeight = NumericTraits< ScalarValueType >::ZeroValue();
m_CurvatureWeight = m_AdvectionWeight = NumericTraits< ScalarValueType >::ZeroValue();
m_Volume = NumericTraits< ScalarValueType >::ZeroValue();
m_FunctionId = 0;
m_SharedData = ITK_NULLPTR;
m_InitialImage = ITK_NULLPTR;
m_FeatureImage = ITK_NULLPTR;
m_UpdateC = false;
for ( unsigned int i = 0; i < ImageDimension; i++ )
{
m_InvSpacing[i] = 1;
}
}
template< typename TInput, typename TFeature, typename TSharedData >
typename RegionBasedLevelSetFunction< TInput, TFeature, TSharedData >::VectorType
RegionBasedLevelSetFunction< TInput, TFeature, TSharedData >
::InitializeZeroVectorConstant()
{
VectorType ans;
for ( unsigned int i = 0; i < ImageDimension; ++i )
{
ans[i] = NumericTraits< ScalarValueType >::ZeroValue();
}
return ans;
}
template< typename TInput, typename TFeature, typename TSharedData >
typename RegionBasedLevelSetFunction< TInput, TFeature, TSharedData >::VectorType
RegionBasedLevelSetFunction< TInput, TFeature, TSharedData >
::m_ZeroVectorConstant =
RegionBasedLevelSetFunction< TInput, TFeature, TSharedData >::InitializeZeroVectorConstant();
/* Computes the Heaviside function and stores it in
m_HeavisideFunctionOfLevelSetImage */
template< typename TInput,
typename TFeature,
typename TSharedData >
void RegionBasedLevelSetFunction< TInput, TFeature, TSharedData >
::ComputeHImage()
{
// The phi function
InputImageConstPointer contourImage = this->m_InitialImage;
InputImagePointer hBuffer =
this->m_SharedData->m_LevelSetDataPointerVector[this->m_FunctionId]->m_HeavisideFunctionOfLevelSetImage;
// Iterator for the phi function
typedef ImageRegionConstIteratorWithIndex< InputImageType > ConstImageIteratorType;
ConstImageIteratorType constIt( contourImage, contourImage->GetRequestedRegion() );
typedef ImageRegionIteratorWithIndex< InputImageType > ImageIteratorType;
ImageIteratorType It( hBuffer, hBuffer->GetRequestedRegion() );
It.GoToBegin(),
constIt.GoToBegin();
while ( !constIt.IsAtEnd() )
{
// Convention is inside of level-set function is negative
ScalarValueType hVal = m_DomainFunction->Evaluate( -constIt.Get() );
It.Set(hVal);
++It;
++constIt;
}
}
template< typename TInput,
typename TFeature,
typename TSharedData >
void
RegionBasedLevelSetFunction< TInput, TFeature, TSharedData >
::UpdateSharedData(bool forceUpdate)
{
if ( forceUpdate )
{
// Must update all H before updating C
this->ComputeHImage();
this->m_UpdateC = false;
}
else
{
if ( !this->m_UpdateC )
{
this->ComputeParameters();
this->m_UpdateC = true;
}
this->UpdateSharedDataParameters();
}
}
template< typename TInput,
typename TFeature,
typename TSharedData >
typename RegionBasedLevelSetFunction< TInput, TFeature, TSharedData >::TimeStepType
RegionBasedLevelSetFunction< TInput, TFeature, TSharedData >
::ComputeGlobalTimeStep(void *GlobalData) const
{
/* Computing the time-step for stable curve evolution */
TimeStepType dt = 0.0;
GlobalDataStruct *d = (GlobalDataStruct *)GlobalData;
if ( vnl_math_abs(d->m_MaxCurvatureChange) > vnl_math::eps )
{
if ( d->m_MaxAdvectionChange > vnl_math::eps )
{
dt = vnl_math_min( ( m_WaveDT / d->m_MaxAdvectionChange ),
( this->m_DT / d->m_MaxCurvatureChange ) );
}
else
{
dt = this->m_DT / d->m_MaxCurvatureChange;
}
}
else
{
if ( d->m_MaxAdvectionChange > vnl_math::eps )
{
//NOTE: What's the difference between this->m_WaveDT and this->m_DT?
dt = this->m_WaveDT / d->m_MaxAdvectionChange;
}
}
// Reset the values
d->m_MaxCurvatureChange = NumericTraits< ScalarValueType >::ZeroValue();
d->m_MaxGlobalChange = NumericTraits< ScalarValueType >::ZeroValue();
d->m_MaxAdvectionChange = NumericTraits< ScalarValueType >::ZeroValue();
return dt;
}
template< typename TInput,
typename TFeature, typename TSharedData >
typename RegionBasedLevelSetFunction< TInput,
TFeature, TSharedData >::
ScalarValueType
RegionBasedLevelSetFunction< TInput,
TFeature, TSharedData >::ComputeCurvature(
const NeighborhoodType & itkNotUsed(it),
const FloatOffsetType & itkNotUsed(offset), GlobalDataStruct *gd)
{
// Calculate the mean curvature
ScalarValueType curvature = NumericTraits< ScalarValueType >::ZeroValue();
unsigned int i, j;
for ( i = 0; i < ImageDimension; i++ )
{
for ( j = 0; j < ImageDimension; j++ )
{
if ( j != i )
{
curvature -= gd->m_dx[i] * gd->m_dx[j] * gd->m_dxy[i][j];
curvature += gd->m_dxy[j][j] * gd->m_dx[i] * gd->m_dx[i];
}
}
}
if ( gd->m_GradMag > vnl_math::eps )
{
curvature /= gd->m_GradMag * gd->m_GradMag * gd->m_GradMag;
}
else
{
curvature /= 1 + gd->m_GradMagSqr;
}
return curvature;
}
// Compute the Hessian matrix and various other derivatives. Some of these
// derivatives may be used by overloaded virtual functions.
template< typename TInput,
typename TFeature,
typename TSharedData >
void
RegionBasedLevelSetFunction< TInput, TFeature, TSharedData >
::ComputeHessian(const NeighborhoodType & it, GlobalDataStruct *gd)
{
const ScalarValueType inputValue = it.GetCenterPixel();
gd->m_GradMagSqr = 0.;
gd->m_GradMag = 0.;
unsigned int i, j;
for ( i = 0; i < ImageDimension; i++ )
{
const unsigned int positionA =
static_cast< unsigned int >( this->m_Center + this->m_xStride[i] );
const unsigned int positionB =
static_cast< unsigned int >( this->m_Center - this->m_xStride[i] );
gd->m_dx[i] = 0.5 * ( this->m_InvSpacing[i] )
* ( it.GetPixel(positionA) - it.GetPixel(positionB) );
gd->m_dx_forward[i] = ( this->m_InvSpacing[i] )
* ( it.GetPixel(positionA) - inputValue );
gd->m_dx_backward[i] = ( this->m_InvSpacing[i] )
* ( inputValue - it.GetPixel(positionB) );
gd->m_GradMagSqr += gd->m_dx[i] * gd->m_dx[i];
gd->m_dxy[i][i] = ( this->m_InvSpacing[i] )
* ( gd->m_dx_forward[i] - gd->m_dx_backward[i] );
for ( j = i + 1; j < ImageDimension; j++ )
{
const unsigned int positionAa = static_cast< unsigned int >(
this->m_Center - this->m_xStride[i] - this->m_xStride[j] );
const unsigned int positionBa = static_cast< unsigned int >(
this->m_Center - this->m_xStride[i] + this->m_xStride[j] );
const unsigned int positionCa = static_cast< unsigned int >(
this->m_Center + this->m_xStride[i] - this->m_xStride[j] );
const unsigned int positionDa = static_cast< unsigned int >(
this->m_Center + this->m_xStride[i] + this->m_xStride[j] );
gd->m_dxy[i][j] = gd->m_dxy[j][i] = 0.25
* ( this->m_InvSpacing[i] ) * ( this->m_InvSpacing[j] )
* ( it.GetPixel(positionAa) - it.GetPixel(positionBa)
+ it.GetPixel(positionDa) - it.GetPixel(positionCa) );
}
}
gd->m_GradMag = std::sqrt(gd->m_GradMagSqr);
}
template< typename TInput,
typename TFeature,
typename TSharedData >
typename RegionBasedLevelSetFunction< TInput, TFeature, TSharedData >::PixelType
RegionBasedLevelSetFunction< TInput, TFeature, TSharedData >
::ComputeUpdate(const NeighborhoodType & it, void *globalData,
const FloatOffsetType & offset)
{
// Access the neighborhood center pixel of phi
const ScalarValueType inputValue = it.GetCenterPixel();
ScalarValueType laplacian_term = NumericTraits< ScalarValueType >::ZeroValue();
ScalarValueType curvature_term = NumericTraits< ScalarValueType >::ZeroValue();
ScalarValueType curvature = NumericTraits< ScalarValueType >::ZeroValue();
ScalarValueType globalTerm = NumericTraits< ScalarValueType >::ZeroValue();
VectorType advection_field;
ScalarValueType x_energy, advection_term = NumericTraits< ScalarValueType >::ZeroValue();
// Access the global data structure
GlobalDataStruct *gd = (GlobalDataStruct *)globalData;
ComputeHessian(it, gd);
ScalarValueType dh = m_DomainFunction->EvaluateDerivative(-inputValue);
// Computing the curvature term
// Used to regularized using the length of contour
if ( ( dh != 0. )
&& ( this->m_CurvatureWeight != NumericTraits< ScalarValueType >::ZeroValue() ) )
{
curvature = this->ComputeCurvature(it, offset, gd);
curvature_term = this->m_CurvatureWeight * curvature
* this->CurvatureSpeed(it, offset, gd) * dh;
gd->m_MaxCurvatureChange =
vnl_math_max( gd->m_MaxCurvatureChange, vnl_math_abs(curvature_term) );
}
// Computing the laplacian term
// Used in maintaining squared distance function
if ( this->m_ReinitializationSmoothingWeight != NumericTraits< ScalarValueType >::ZeroValue() )
{
laplacian_term = this->ComputeLaplacian(gd) - curvature;
laplacian_term *= this->m_ReinitializationSmoothingWeight
* this->LaplacianSmoothingSpeed(it, offset, gd);
}
if ( ( dh != 0. ) && ( m_AdvectionWeight != NumericTraits< ScalarValueType >::ZeroValue() ) )
{
advection_field = this->AdvectionField(it, offset, gd);
for ( unsigned int i = 0; i < ImageDimension; i++ )
{
x_energy = m_AdvectionWeight * advection_field[i];
// TODO: Is this condition right ?
if ( x_energy > NumericTraits< ScalarValueType >::ZeroValue() )
{
advection_term += advection_field[i] * gd->m_dx_backward[i];
}
else
{
advection_term += advection_field[i] * gd->m_dx_forward[i];
}
gd->m_MaxAdvectionChange =
vnl_math_max( gd->m_MaxAdvectionChange, vnl_math_abs(x_energy) );
}
advection_term *= m_AdvectionWeight * dh;
}
/* Compute the globalTerm - rms difference of image with c_0 or c_1*/
if ( dh != 0. )
{
globalTerm = dh * this->ComputeGlobalTerm( inputValue, it.GetIndex() );
}
/* Final update value is the local terms of curvature lengths and laplacian
squared distances - global terms of rms differences of image and piecewise
constant regions*/
PixelType updateVal =
static_cast< PixelType >( curvature_term + laplacian_term + globalTerm + advection_term );
/* If MaxGlobalChange recorded is lower than the current globalTerm */
if ( vnl_math_abs(gd->m_MaxGlobalChange) < vnl_math_abs(globalTerm) )
{
gd->m_MaxGlobalChange = globalTerm;
}
return updateVal;
}
template< typename TInput, typename TFeature, typename TSharedData >
typename RegionBasedLevelSetFunction< TInput, TFeature, TSharedData >
::ScalarValueType
RegionBasedLevelSetFunction< TInput, TFeature, TSharedData >
::ComputeLaplacian(GlobalDataStruct *gd)
{
ScalarValueType laplacian = 0.;
// Compute the laplacian using the existing second derivative values
for ( unsigned int i = 0; i < ImageDimension; i++ )
{
laplacian += gd->m_dxy[i][i];
}
return laplacian;
}
template< typename TInput, typename TFeature, typename TSharedData >
typename RegionBasedLevelSetFunction< TInput, TFeature, TSharedData >
::ScalarValueType
RegionBasedLevelSetFunction< TInput, TFeature, TSharedData >
::ComputeVolumeRegularizationTerm()
{
return 2
* ( this->m_SharedData->m_LevelSetDataPointerVector[this->m_FunctionId]->
m_WeightedNumberOfPixelsInsideLevelSet
- this->m_Volume );
}
/* Computes the fidelity term (eg: (intensity - mean)2 ).
Most of the code is concerned with using the appropriate combination
of Heaviside and dirac delta for each part of the fidelity term.
- the final dH is the dirac delta term corresponding to the current
level set we are updating. */
template< typename TInput, typename TFeature, typename TSharedData >
typename RegionBasedLevelSetFunction< TInput, TFeature, TSharedData >
::ScalarValueType
RegionBasedLevelSetFunction< TInput, TFeature, TSharedData >
::ComputeGlobalTerm(
const ScalarValueType & itkNotUsed(inputPixel),
const InputIndexType & inputIndex)
{
// computes if it belongs to background
ScalarValueType product = 1;
// Assuming only 1 level set function to be present
FeatureIndexType featIndex = static_cast< FeatureIndexType >( inputIndex );
const FeaturePixelType featureVal =
this->m_FeatureImage->GetPixel (inputIndex);
ScalarValueType overlapTerm = 0.;
// This conditional statement computes the amount of overlap s
// and the presence of background pr
if ( this->m_SharedData->m_FunctionCount > 1 )
{
featIndex = this->m_SharedData->m_LevelSetDataPointerVector[this->m_FunctionId]->GetFeatureIndex(inputIndex);
overlapTerm = this->m_OverlapPenaltyWeight *
ComputeOverlapParameters(featIndex, product);
}
ScalarValueType interim = this->m_Lambda1 * this->ComputeInternalTerm(featureVal, featIndex);
ScalarValueType outTerm = this->m_Lambda2 * product * this->ComputeExternalTerm(featureVal, featIndex);
ScalarValueType regularizationTerm = this->m_VolumeMatchingWeight *
ComputeVolumeRegularizationTerm() - this->m_AreaWeight;
ScalarValueType globalTerm = +interim - outTerm + overlapTerm + regularizationTerm;
return globalTerm;
}
} // end namespace
#endif
|