This file is indexed.

/usr/include/ITK-4.9/itkRegionBasedLevelSetFunction.hxx is in libinsighttoolkit4-dev 4.9.0-4ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkRegionBasedLevelSetFunction_hxx
#define itkRegionBasedLevelSetFunction_hxx

#include "itkRegionBasedLevelSetFunction.h"
#include "itkImageRegionIteratorWithIndex.h"

namespace itk
{
template< typename TInput,
          typename TFeature,
          typename TSharedData >
double
RegionBasedLevelSetFunction< TInput, TFeature, TSharedData >
::m_WaveDT = 1.0 / ( 2.0 * ImageDimension );

template< typename TInput,
          typename TFeature,
          typename TSharedData >
double
RegionBasedLevelSetFunction< TInput, TFeature, TSharedData >
::m_DT     = 1.0 / ( 2.0 * ImageDimension );

template< typename TInput,
          typename TFeature,
          typename TSharedData >
RegionBasedLevelSetFunction< TInput,
                             TFeature,
                             TSharedData >
::RegionBasedLevelSetFunction()
{
  m_Lambda1 = NumericTraits< ScalarValueType >::OneValue();
  m_Lambda2 = NumericTraits< ScalarValueType >::OneValue();

  m_OverlapPenaltyWeight = NumericTraits< ScalarValueType >::ZeroValue();
  m_AreaWeight = NumericTraits< ScalarValueType >::ZeroValue();
  m_VolumeMatchingWeight = NumericTraits< ScalarValueType >::ZeroValue();
  m_ReinitializationSmoothingWeight = NumericTraits< ScalarValueType >::ZeroValue();
  m_CurvatureWeight = m_AdvectionWeight = NumericTraits< ScalarValueType >::ZeroValue();
  m_Volume = NumericTraits< ScalarValueType >::ZeroValue();

  m_FunctionId = 0;

  m_SharedData = ITK_NULLPTR;
  m_InitialImage = ITK_NULLPTR;
  m_FeatureImage = ITK_NULLPTR;
  m_UpdateC = false;

  for ( unsigned int i = 0; i < ImageDimension; i++ )
    {
    m_InvSpacing[i] = 1;
    }
}

template< typename TInput, typename TFeature, typename TSharedData >
typename RegionBasedLevelSetFunction< TInput, TFeature, TSharedData >::VectorType
RegionBasedLevelSetFunction< TInput, TFeature, TSharedData >
::InitializeZeroVectorConstant()
{
  VectorType ans;

  for ( unsigned int i = 0; i < ImageDimension; ++i )
    {
    ans[i] = NumericTraits< ScalarValueType >::ZeroValue();
    }

  return ans;
}

template< typename TInput, typename TFeature, typename TSharedData >
typename RegionBasedLevelSetFunction< TInput, TFeature, TSharedData >::VectorType
RegionBasedLevelSetFunction< TInput, TFeature, TSharedData >
::m_ZeroVectorConstant =
  RegionBasedLevelSetFunction< TInput, TFeature, TSharedData >::InitializeZeroVectorConstant();

/* Computes the Heaviside function and stores it in
  m_HeavisideFunctionOfLevelSetImage */
template< typename TInput,
          typename TFeature,
          typename TSharedData >
void RegionBasedLevelSetFunction< TInput, TFeature, TSharedData >
::ComputeHImage()
{
  // The phi function
  InputImageConstPointer contourImage = this->m_InitialImage;
  InputImagePointer      hBuffer =
    this->m_SharedData->m_LevelSetDataPointerVector[this->m_FunctionId]->m_HeavisideFunctionOfLevelSetImage;

  // Iterator for the phi function
  typedef ImageRegionConstIteratorWithIndex< InputImageType > ConstImageIteratorType;
  ConstImageIteratorType constIt( contourImage, contourImage->GetRequestedRegion() );

  typedef ImageRegionIteratorWithIndex< InputImageType > ImageIteratorType;
  ImageIteratorType It( hBuffer, hBuffer->GetRequestedRegion() );

  It.GoToBegin(),
    constIt.GoToBegin();

  while ( !constIt.IsAtEnd() )
    {
    // Convention is inside of level-set function is negative
    ScalarValueType hVal = m_DomainFunction->Evaluate( -constIt.Get() );
    It.Set(hVal);
    ++It;
    ++constIt;
    }
}

template< typename TInput,
          typename TFeature,
          typename TSharedData >
void
RegionBasedLevelSetFunction< TInput, TFeature, TSharedData >
::UpdateSharedData(bool forceUpdate)
{
  if ( forceUpdate )
    {
    // Must update all H before updating C
    this->ComputeHImage();
    this->m_UpdateC = false;
    }
  else
    {
    if ( !this->m_UpdateC )
      {
      this->ComputeParameters();
      this->m_UpdateC = true;
      }
    this->UpdateSharedDataParameters();
    }
}

template< typename TInput,
          typename TFeature,
          typename TSharedData >
typename RegionBasedLevelSetFunction< TInput, TFeature, TSharedData >::TimeStepType
RegionBasedLevelSetFunction< TInput, TFeature, TSharedData >
::ComputeGlobalTimeStep(void *GlobalData) const
{
/* Computing the time-step for stable curve evolution */

  TimeStepType dt = 0.0;

  GlobalDataStruct *d = (GlobalDataStruct *)GlobalData;

  if ( vnl_math_abs(d->m_MaxCurvatureChange) > vnl_math::eps )
    {
    if ( d->m_MaxAdvectionChange > vnl_math::eps )
      {
      dt = vnl_math_min( ( m_WaveDT / d->m_MaxAdvectionChange ),
                         ( this->m_DT / d->m_MaxCurvatureChange ) );
      }
    else
      {
      dt = this->m_DT / d->m_MaxCurvatureChange;
      }
    }
  else
    {
    if ( d->m_MaxAdvectionChange > vnl_math::eps )
      {
      //NOTE: What's the difference between this->m_WaveDT and this->m_DT?
      dt = this->m_WaveDT / d->m_MaxAdvectionChange;
      }
    }

  // Reset the values
  d->m_MaxCurvatureChange   = NumericTraits< ScalarValueType >::ZeroValue();
  d->m_MaxGlobalChange      = NumericTraits< ScalarValueType >::ZeroValue();
  d->m_MaxAdvectionChange   = NumericTraits< ScalarValueType >::ZeroValue();

  return dt;
}

template< typename TInput,
          typename TFeature, typename TSharedData >
typename RegionBasedLevelSetFunction< TInput,
                                      TFeature, TSharedData >::
ScalarValueType
RegionBasedLevelSetFunction< TInput,
                             TFeature, TSharedData >::ComputeCurvature(
  const NeighborhoodType & itkNotUsed(it),
  const FloatOffsetType & itkNotUsed(offset), GlobalDataStruct *gd)
{
  // Calculate the mean curvature
  ScalarValueType curvature = NumericTraits< ScalarValueType >::ZeroValue();

  unsigned int i, j;

  for ( i = 0; i < ImageDimension; i++ )
    {
    for ( j = 0; j < ImageDimension; j++ )
      {
      if ( j != i )
        {
        curvature -= gd->m_dx[i] * gd->m_dx[j] * gd->m_dxy[i][j];
        curvature += gd->m_dxy[j][j] * gd->m_dx[i] * gd->m_dx[i];
        }
      }
    }

  if ( gd->m_GradMag > vnl_math::eps )
    {
    curvature /= gd->m_GradMag * gd->m_GradMag * gd->m_GradMag;
    }
  else
    {
    curvature /= 1 + gd->m_GradMagSqr;
    }

  return curvature;
}

// Compute the Hessian matrix and various other derivatives.  Some of these
// derivatives may be used by overloaded virtual functions.
template< typename TInput,
          typename TFeature,
          typename TSharedData >
void
RegionBasedLevelSetFunction< TInput, TFeature, TSharedData >
::ComputeHessian(const NeighborhoodType & it, GlobalDataStruct *gd)
{
  const ScalarValueType inputValue = it.GetCenterPixel();

  gd->m_GradMagSqr = 0.;
  gd->m_GradMag = 0.;
  unsigned int i, j;

  for ( i = 0; i < ImageDimension; i++ )
    {
    const unsigned int positionA =
      static_cast< unsigned int >( this->m_Center + this->m_xStride[i] );
    const unsigned int positionB =
      static_cast< unsigned int >( this->m_Center - this->m_xStride[i] );

    gd->m_dx[i] = 0.5 * ( this->m_InvSpacing[i] )
                  * ( it.GetPixel(positionA) - it.GetPixel(positionB) );
    gd->m_dx_forward[i]  = ( this->m_InvSpacing[i] )
                           * ( it.GetPixel(positionA) - inputValue );
    gd->m_dx_backward[i] = ( this->m_InvSpacing[i] )
                           * ( inputValue - it.GetPixel(positionB) );

    gd->m_GradMagSqr += gd->m_dx[i] * gd->m_dx[i];

    gd->m_dxy[i][i] = ( this->m_InvSpacing[i] )
                      * ( gd->m_dx_forward[i] - gd->m_dx_backward[i] );

    for ( j = i + 1; j < ImageDimension; j++ )
      {
      const unsigned int positionAa = static_cast< unsigned int >(
        this->m_Center - this->m_xStride[i] - this->m_xStride[j] );
      const unsigned int positionBa = static_cast< unsigned int >(
        this->m_Center - this->m_xStride[i] + this->m_xStride[j] );
      const unsigned int positionCa = static_cast< unsigned int >(
        this->m_Center + this->m_xStride[i] - this->m_xStride[j] );
      const unsigned int positionDa = static_cast< unsigned int >(
        this->m_Center + this->m_xStride[i] + this->m_xStride[j] );

      gd->m_dxy[i][j] = gd->m_dxy[j][i] = 0.25
                                          * ( this->m_InvSpacing[i] ) * ( this->m_InvSpacing[j] )
                                          * ( it.GetPixel(positionAa) - it.GetPixel(positionBa)
                                              + it.GetPixel(positionDa) - it.GetPixel(positionCa) );
      }
    }
  gd->m_GradMag = std::sqrt(gd->m_GradMagSqr);
}

template< typename TInput,
          typename TFeature,
          typename TSharedData >
typename RegionBasedLevelSetFunction< TInput, TFeature, TSharedData >::PixelType
RegionBasedLevelSetFunction< TInput, TFeature, TSharedData >
::ComputeUpdate(const NeighborhoodType & it, void *globalData,
                const FloatOffsetType & offset)
{
  // Access the neighborhood center pixel of phi
  const ScalarValueType inputValue = it.GetCenterPixel();

  ScalarValueType laplacian_term = NumericTraits< ScalarValueType >::ZeroValue();
  ScalarValueType curvature_term = NumericTraits< ScalarValueType >::ZeroValue();
  ScalarValueType curvature = NumericTraits< ScalarValueType >::ZeroValue();
  ScalarValueType globalTerm = NumericTraits< ScalarValueType >::ZeroValue();
  VectorType      advection_field;
  ScalarValueType x_energy, advection_term = NumericTraits< ScalarValueType >::ZeroValue();

  // Access the global data structure
  GlobalDataStruct *gd = (GlobalDataStruct *)globalData;

  ComputeHessian(it, gd);

  ScalarValueType dh = m_DomainFunction->EvaluateDerivative(-inputValue);

  // Computing the curvature term
  // Used to regularized using the length of contour
  if ( ( dh != 0. )
       && ( this->m_CurvatureWeight != NumericTraits< ScalarValueType >::ZeroValue() ) )
    {
    curvature = this->ComputeCurvature(it, offset, gd);
    curvature_term = this->m_CurvatureWeight * curvature
                     * this->CurvatureSpeed(it, offset, gd) * dh;

    gd->m_MaxCurvatureChange =
      vnl_math_max( gd->m_MaxCurvatureChange, vnl_math_abs(curvature_term) );
    }

  // Computing the laplacian term
  // Used in maintaining squared distance function
  if ( this->m_ReinitializationSmoothingWeight != NumericTraits< ScalarValueType >::ZeroValue() )
    {
    laplacian_term = this->ComputeLaplacian(gd) - curvature;

    laplacian_term *= this->m_ReinitializationSmoothingWeight
                      * this->LaplacianSmoothingSpeed(it, offset, gd);
    }

  if ( ( dh != 0. ) && ( m_AdvectionWeight != NumericTraits< ScalarValueType >::ZeroValue() ) )
    {
    advection_field = this->AdvectionField(it, offset, gd);

    for ( unsigned int i = 0; i < ImageDimension; i++ )
      {
      x_energy = m_AdvectionWeight * advection_field[i];

      // TODO: Is this condition right ?
      if ( x_energy > NumericTraits< ScalarValueType >::ZeroValue() )
        {
        advection_term += advection_field[i] * gd->m_dx_backward[i];
        }
      else
        {
        advection_term += advection_field[i] * gd->m_dx_forward[i];
        }

      gd->m_MaxAdvectionChange =
        vnl_math_max( gd->m_MaxAdvectionChange, vnl_math_abs(x_energy) );
      }
    advection_term *= m_AdvectionWeight * dh;
    }

  /* Compute the globalTerm - rms difference of image with c_0 or c_1*/
  if ( dh != 0. )
    {
    globalTerm = dh * this->ComputeGlobalTerm( inputValue, it.GetIndex() );
    }

  /* Final update value is the local terms of curvature lengths and laplacian
  squared distances - global terms of rms differences of image and piecewise
  constant regions*/
  PixelType updateVal =
    static_cast< PixelType >( curvature_term + laplacian_term + globalTerm + advection_term );

  /* If MaxGlobalChange recorded is lower than the current globalTerm */
  if ( vnl_math_abs(gd->m_MaxGlobalChange) < vnl_math_abs(globalTerm) )
    {
    gd->m_MaxGlobalChange = globalTerm;
    }

  return updateVal;
}

template< typename TInput, typename TFeature, typename TSharedData >
typename RegionBasedLevelSetFunction< TInput, TFeature, TSharedData >
::ScalarValueType
RegionBasedLevelSetFunction< TInput, TFeature, TSharedData >
::ComputeLaplacian(GlobalDataStruct *gd)
{
  ScalarValueType laplacian = 0.;

  // Compute the laplacian using the existing second derivative values
  for ( unsigned int i = 0; i < ImageDimension; i++ )
    {
    laplacian += gd->m_dxy[i][i];
    }

  return laplacian;
}

template< typename TInput, typename TFeature, typename TSharedData >
typename RegionBasedLevelSetFunction< TInput, TFeature, TSharedData >
::ScalarValueType
RegionBasedLevelSetFunction< TInput, TFeature, TSharedData >
::ComputeVolumeRegularizationTerm()
{
  return 2
         * ( this->m_SharedData->m_LevelSetDataPointerVector[this->m_FunctionId]->
             m_WeightedNumberOfPixelsInsideLevelSet
             - this->m_Volume );
}

/* Computes the fidelity term (eg: (intensity - mean)2 ).
Most of the code is concerned with using the appropriate combination
of Heaviside and dirac delta for each part of the fidelity term.
- the final dH is the dirac delta term corresponding to the current
level set we are updating. */
template< typename TInput, typename TFeature, typename TSharedData >
typename RegionBasedLevelSetFunction< TInput, TFeature, TSharedData >
::ScalarValueType
RegionBasedLevelSetFunction< TInput, TFeature, TSharedData >
::ComputeGlobalTerm(
  const ScalarValueType & itkNotUsed(inputPixel),
  const InputIndexType & inputIndex)
{
  // computes if it belongs to background
  ScalarValueType product = 1;

  // Assuming only 1 level set function to be present
  FeatureIndexType featIndex = static_cast< FeatureIndexType >( inputIndex );

  const FeaturePixelType featureVal =
    this->m_FeatureImage->GetPixel (inputIndex);

  ScalarValueType overlapTerm = 0.;

  // This conditional statement computes the amount of overlap s
  // and the presence of background pr
  if ( this->m_SharedData->m_FunctionCount > 1 )
    {
    featIndex = this->m_SharedData->m_LevelSetDataPointerVector[this->m_FunctionId]->GetFeatureIndex(inputIndex);
    overlapTerm = this->m_OverlapPenaltyWeight *
                  ComputeOverlapParameters(featIndex, product);
    }

  ScalarValueType interim = this->m_Lambda1 * this->ComputeInternalTerm(featureVal, featIndex);
  ScalarValueType outTerm = this->m_Lambda2 * product * this->ComputeExternalTerm(featureVal, featIndex);

  ScalarValueType regularizationTerm = this->m_VolumeMatchingWeight *
                                       ComputeVolumeRegularizationTerm() - this->m_AreaWeight;

  ScalarValueType globalTerm = +interim - outTerm + overlapTerm + regularizationTerm;

  return globalTerm;
}
} // end namespace

#endif