This file is indexed.

/usr/include/ITK-4.9/itkRegistrationParameterScalesEstimator.hxx is in libinsighttoolkit4-dev 4.9.0-4ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkRegistrationParameterScalesEstimator_hxx
#define itkRegistrationParameterScalesEstimator_hxx

#include "itkRegistrationParameterScalesEstimator.h"

#include "itkCompositeTransform.h"
#include "itkPointSet.h"
#include "itkObjectToObjectMetric.h"

namespace itk
{

template< typename TMetric >
RegistrationParameterScalesEstimator< TMetric >
::RegistrationParameterScalesEstimator()
{
  // estimate parameter scales of the moving transform
  this->m_TransformForward = true;

  // number for random sampling
  this->m_NumberOfRandomSamples = 0;

  // default sampling strategy
  this->m_SamplingStrategy = FullDomainSampling;

  // the default radius of the central region for sampling
  this->m_CentralRegionRadius = 5;

  // the metric object must be set before EstimateScales()
}

/** Estimate the trusted scale for steps. It returns the voxel spacing. */
template< typename TMetric >
typename RegistrationParameterScalesEstimator< TMetric >::FloatType
RegistrationParameterScalesEstimator< TMetric >
::EstimateMaximumStepSize()
{
  this->CheckAndSetInputs();

  const VirtualSpacingType& spacing = this->m_Metric->GetVirtualSpacing();

  const SizeValueType dim = this->GetDimension();

  FloatType minSpacing = NumericTraits<FloatType>::max();

  for (SizeValueType d=0; d<dim; d++)
    {
    if (minSpacing > spacing[d])
      {
      minSpacing = spacing[d];
      }
    }

  return minSpacing;
}

/** Validate and set metric and its transforms. */
template< typename TMetric >
bool
RegistrationParameterScalesEstimator< TMetric >
::CheckAndSetInputs()
{
if (m_Metric.IsNull())
    {
    itkExceptionMacro("RegistrationParameterScalesEstimator: the metric is ITK_NULLPTR");
    }

  if (this->m_Metric->GetMovingTransform() == ITK_NULLPTR)
    {
    itkExceptionMacro("RegistrationParameterScalesEstimator: this->m_MovingTransform in the metric is ITK_NULLPTR.");
    }
  if (this->m_Metric->GetFixedTransform() == ITK_NULLPTR)
    {
    itkExceptionMacro("RegistrationParameterScalesEstimator: this->m_FixedTransform in the metric is ITK_NULLPTR.");
    }

  return true;
}

/** Get the transform being estimated scales for. */
template< typename TMetric >
const TransformBaseTemplate<typename TMetric::MeasureType> *
RegistrationParameterScalesEstimator< TMetric >
::GetTransform()
{
  if (m_TransformForward)
    {
    return this->m_Metric->GetMovingTransform();
    }
  else
    {
    return this->m_Metric->GetFixedTransform();
    }
}

/** Get the dimension of the target transformed to. */
template< typename TMetric >
itk::SizeValueType
RegistrationParameterScalesEstimator< TMetric >
::GetDimension()
{
  if (m_TransformForward)
    {
    return MovingDimension;
    }
  else
    {
    return FixedDimension;
    }
}

/** Check if the transform being optimized has local support. */

template< typename TMetric >
bool
RegistrationParameterScalesEstimator< TMetric >
::IsDisplacementFieldTransform()
{
  if( this->m_TransformForward && this->m_Metric->GetMovingTransform()->GetTransformCategory() == MovingTransformType::DisplacementField )
    {
    return true;
    }
  else if( !this->m_TransformForward && this->m_Metric->GetFixedTransform()->GetTransformCategory() == FixedTransformType::DisplacementField )
    {
    return true;
    }
  return false;
}

template< typename TMetric >
bool
RegistrationParameterScalesEstimator< TMetric >
::IsBSplineTransform()
{
  bool isBSplineTransform = false;

  if( this->m_TransformForward && this->m_Metric->GetMovingTransform()->GetTransformCategory() == MovingTransformType::BSpline )
    {
    isBSplineTransform = true;
    }
  else if( !this->m_TransformForward && this->m_Metric->GetFixedTransform()->GetTransformCategory() == FixedTransformType::BSpline )
    {
    isBSplineTransform = true;
    }

  // We need to check for the case where the fixed/moving transform is
  // a composite transform with optimizing B-spline transforms.
  // The CompositeTransform class function GetTransformCategory() handles
  // this scenario for displacement field transforms but we need to duplicate
  // the analogous b-spline case here.

  if( !isBSplineTransform )
    {
    if( this->m_TransformForward )
      {
      typedef CompositeTransform<FloatType, MovingDimension> CompositeTransformType;
      typename CompositeTransformType::Pointer compositeTransform = dynamic_cast<CompositeTransformType *>( const_cast<MovingTransformType *>( this->m_Metric->GetMovingTransform() ) );

      if( compositeTransform )
        {
        isBSplineTransform = true;
        for( signed long tind = static_cast<signed long>( compositeTransform->GetNumberOfTransforms() ) - 1; tind >= 0; tind-- )
          {
          if( compositeTransform->GetNthTransformToOptimize( tind ) &&
            ( compositeTransform->GetNthTransformConstPointer( tind )->GetTransformCategory() != MovingTransformType::BSpline ) )
            {
            isBSplineTransform = false;
            break;
            }
          }
        }
      }
    else // !this->m_TransformForward
      {
      typedef CompositeTransform<FloatType, FixedDimension> CompositeTransformType;
      typename CompositeTransformType::Pointer compositeTransform = dynamic_cast<CompositeTransformType *>( const_cast<FixedTransformType *>( this->m_Metric->GetFixedTransform() ) );

      if( compositeTransform )
        {
        isBSplineTransform = true;
        for( signed long tind = static_cast<signed long>( compositeTransform->GetNumberOfTransforms() ) - 1; tind >= 0; tind-- )
          {
          if( compositeTransform->GetNthTransformToOptimize( tind ) &&
            ( compositeTransform->GetNthTransformConstPointer( tind )->GetTransformCategory() != FixedTransformType::BSpline ) )
            {
            isBSplineTransform = false;
            break;
            }
          }
        }
      }
    }

  return isBSplineTransform;
}


template< typename TMetric >
bool
RegistrationParameterScalesEstimator< TMetric >
::TransformHasLocalSupportForScalesEstimation()
{
  if( this->IsDisplacementFieldTransform() || this->IsBSplineTransform() )
    {
    return true;
    }
  else
    {
    return false;
    }
}

/** Get the number of scales. */
template< typename TMetric >
SizeValueType
RegistrationParameterScalesEstimator< TMetric >
::GetNumberOfLocalParameters()
{
  if (this->GetTransformForward())
    {
    return this->m_Metric->GetMovingTransform()->GetNumberOfLocalParameters();
    }
  else
    {
    return this->m_Metric->GetFixedTransform()->GetNumberOfLocalParameters();
    }
}

/** Update the transform with a change in parameters. */
template< typename TMetric >
void
RegistrationParameterScalesEstimator< TMetric >
::UpdateTransformParameters(const ParametersType &deltaParameters)
{
  // Apply the delta parameters to the transform
  if (this->m_TransformForward)
    {
    typename MovingTransformType::Pointer movingTransform = const_cast<MovingTransformType *>(this->m_Metric->GetMovingTransform());
    ParametersType &step = const_cast<ParametersType &>(deltaParameters);
    movingTransform->UpdateTransformParameters(step);
    }
  else
    {
    typename FixedTransformType::Pointer fixedTransform = const_cast<FixedTransformType *>(this->m_Metric->GetFixedTransform());
    ParametersType &step = const_cast<ParametersType &>(deltaParameters);
    fixedTransform->UpdateTransformParameters(step);
    }
}

/** Transform a physical point to a new physical point.
 *  We want to compute shift in physical space so that the scales is not
 *  sensitive to spacings and directions of voxel sampling.
 */
template< typename TMetric >
template< typename TTargetPointType >
void
RegistrationParameterScalesEstimator< TMetric >
::TransformPoint(const VirtualPointType &point, TTargetPointType &mappedPoint)
{
  if (this->GetTransformForward())
    {
    mappedPoint = this->m_Metric->GetMovingTransform()->TransformPoint( point );
    }
  else
    {
    mappedPoint = this->m_Metric->GetFixedTransform()->TransformPoint( point );
    }
}

/** Get the squared norms of the transform Jacobians w.r.t parameters at a point */
template< typename TMetric >
void
RegistrationParameterScalesEstimator< TMetric >
::ComputeSquaredJacobianNorms( const VirtualPointType  & point, ParametersType & squareNorms )
{
  const SizeValueType numPara = this->GetNumberOfLocalParameters();
  const SizeValueType dim = this->GetDimension();
  JacobianType jacobian(dim,numPara);

  if (this->GetTransformForward())
    {
    this->m_Metric->GetMovingTransform()->ComputeJacobianWithRespectToParameters(point, jacobian);

    for (SizeValueType p=0; p<numPara; p++)
      {
      squareNorms[p] = NumericTraits< typename ParametersType::ValueType >::ZeroValue();
      for (SizeValueType d=0; d<dim; d++)
        {
        squareNorms[p] += jacobian[d][p] * jacobian[d][p];
        }
      }
    }
  else
    {
    this->m_Metric->GetFixedTransform()->ComputeJacobianWithRespectToParameters(point, jacobian);

    for (SizeValueType p=0; p<numPara; p++)
      {
      squareNorms[p] = NumericTraits< typename ParametersType::ValueType >::ZeroValue();
      for (SizeValueType d=0; d<dim; d++)
        {
        squareNorms[p] += jacobian[d][p] * jacobian[d][p];
        }
      }
    }
}

/** Sample the virtual domain with phyical points
 *  and store the results into this->m_SamplePoints.
 */
template< typename TMetric >
void
RegistrationParameterScalesEstimator< TMetric >
::SampleVirtualDomain()
{
  if ( !(this->m_SamplingTime < this->GetTimeStamp()) && !(this->m_SamplingTime < this->m_Metric->GetVirtualDomainTimeStamp()) )
    {
    return;
    }

  if( ! this->m_Metric->SupportsArbitraryVirtualDomainSamples() && ! this->m_VirtualDomainPointSet )
    {
    itkExceptionMacro(" The assigned metric does not support aribitrary virtual domain sampling, "
                      " yet this->m_VirtualDomainPointSet has not been assigned. " );
    }

  if (m_SamplingStrategy == VirtualDomainPointSetSampling)
    {
    this->SampleVirtualDomainWithPointSet();
    }
  else if (m_SamplingStrategy == CornerSampling)
    {
    this->SampleVirtualDomainWithCorners();
    }
  else if (m_SamplingStrategy == RandomSampling)
    {
    this->SampleVirtualDomainRandomly();
    }
  else if (m_SamplingStrategy == CentralRegionSampling)
    {
    this->SampleVirtualDomainWithCentralRegion();
    }
  else
    {
    this->SampleVirtualDomainFully();
    }

  // Sanity check
  if( this->m_SamplePoints.size() == 0 )
    {
    itkExceptionMacro("No sample points were created.");
    }

  this->Modified();
  this->m_SamplingTime = this->GetTimeStamp();
}

/**
 * Set the sampling strategy automatically for scales estimation.
 */
template< typename TMetric >
void
RegistrationParameterScalesEstimator< TMetric >
::SetScalesSamplingStrategy()
{
  if( this->m_VirtualDomainPointSet )
    {
    this->SetSamplingStrategy(VirtualDomainPointSetSampling);
    }
  else if( this->TransformHasLocalSupportForScalesEstimation() )
    {
    this->SetSamplingStrategy(CentralRegionSampling);
    }
  else if (this->CheckGeneralAffineTransform())
    {
    this->SetSamplingStrategy(CornerSampling);
    }
  else
    {
    this->SetSamplingStrategy(RandomSampling);
    this->SetNumberOfRandomSamples( SizeOfSmallDomain );
    }
}

/**
 * Set the sampling strategy automatically for step scale estimation.
 */
template< typename TMetric >
void
RegistrationParameterScalesEstimator< TMetric >
::SetStepScaleSamplingStrategy()
{
  if( this->m_VirtualDomainPointSet )
    {
    this->SetSamplingStrategy(VirtualDomainPointSetSampling);
    }
  else if( this->TransformHasLocalSupportForScalesEstimation() )
    {
    // Have to use FullDomainSampling for a transform with local support
    this->SetSamplingStrategy(FullDomainSampling);
    }
  else if (this->CheckGeneralAffineTransform())
    {
    this->SetSamplingStrategy(CornerSampling);
    }
  else
    {
    this->SetSamplingStrategy(RandomSampling);
    this->SetNumberOfRandomSamples( SizeOfSmallDomain );
    }
}

/**
 * Check if the transform is a general affine transform that maps a line
 * segment to a line segment.
 */
template< typename TMetric >
bool
RegistrationParameterScalesEstimator< TMetric >
::CheckGeneralAffineTransform()
{
  if (this->GetTransformForward())
    {
    return this->CheckGeneralAffineTransformTemplated<MovingTransformType>();
    }
  else
    {
    return this->CheckGeneralAffineTransformTemplated<FixedTransformType>();
    }
}

/**
 * The templated version of CheckGeneralAffineTransform to check if the
 * transform is a general affine transform that maps a line segment to
 * a line segment.
 *
 * Examples are subclasses of MatrixOffsetTransformBaseType, TranslationTransform,
 * Rigid3DPerspectiveTransform, IdentityTransform, etc.
 */
template< typename TMetric >
template< typename TTransform >
bool
RegistrationParameterScalesEstimator< TMetric >
::CheckGeneralAffineTransformTemplated()
{
  typedef typename TTransform::ScalarType ScalarType;
  const SizeValueType InputSpaceDimension = TTransform::InputSpaceDimension;
  const SizeValueType OutputSpaceDimension = TTransform::OutputSpaceDimension;

  typedef MatrixOffsetTransformBase<ScalarType, InputSpaceDimension, OutputSpaceDimension>
          MatrixOffsetTransformBaseType;
  typedef TranslationTransform<ScalarType, InputSpaceDimension>
          TranslationTransformType;
  typedef IdentityTransform<ScalarType, InputSpaceDimension>
          IdentityTransformType;
  typedef Rigid3DPerspectiveTransform<ScalarType>
          Rigid3DPerspectiveTransformType;

  const TransformBaseTemplate<typename TMetric::MeasureType> *transform = this->GetTransform();

  if ( dynamic_cast< const MatrixOffsetTransformBaseType * >( transform ) != ITK_NULLPTR
    || dynamic_cast< const TranslationTransformType * >( transform ) != ITK_NULLPTR
    || dynamic_cast< const IdentityTransformType * >( transform ) != ITK_NULLPTR
    || dynamic_cast< const Rigid3DPerspectiveTransformType * >( transform ) != ITK_NULLPTR
    )
    {
    return true;
    }

  return false;
}

/**
 *  Get the index of the virtual image center.
 */
template< typename TMetric >
typename RegistrationParameterScalesEstimator< TMetric >::VirtualIndexType
RegistrationParameterScalesEstimator< TMetric >
::GetVirtualDomainCentralIndex()
{
  VirtualRegionType region = this->m_Metric->GetVirtualRegion();
  const SizeValueType dim = this->GetDimension();

  VirtualIndexType lowerIndex, upperIndex, centralIndex;
  lowerIndex = region.GetIndex();
  upperIndex = region.GetUpperIndex();

  for (SizeValueType d=0; d<dim; d++)
    {
    centralIndex[d] = (IndexValueType)((lowerIndex[d] + upperIndex[d])/2.0);
    }

  return centralIndex;
}

/**
 *  Get the region around the virtual image center.
 */
template< typename TMetric >
typename RegistrationParameterScalesEstimator< TMetric >::VirtualRegionType
RegistrationParameterScalesEstimator< TMetric >
::GetVirtualDomainCentralRegion()
{
  VirtualIndexType centralIndex = this->GetVirtualDomainCentralIndex();

  VirtualRegionType region = this->m_Metric->GetVirtualRegion();
  const SizeValueType dim = this->GetDimension();

  VirtualIndexType lowerIndex, upperIndex;
  lowerIndex = region.GetIndex();
  upperIndex = region.GetUpperIndex();

  for (SizeValueType d=0; d<dim; d++)
    {
    if (lowerIndex[d] < centralIndex[d] - this->m_CentralRegionRadius)
      {
      lowerIndex[d] = centralIndex[d] - this->m_CentralRegionRadius;
      }
    if (upperIndex[d] > centralIndex[d] + this->m_CentralRegionRadius)
      {
      upperIndex[d] = centralIndex[d] + this->m_CentralRegionRadius;
      }
    }

  VirtualRegionType centralRegion;
  centralRegion.SetIndex(lowerIndex);
  centralRegion.SetUpperIndex(upperIndex);

  return centralRegion;
}

/**
 *  Sample the virtual domain with the voxels around the center.
 */
template< typename TMetric >
void
RegistrationParameterScalesEstimator< TMetric >
::SampleVirtualDomainWithCentralRegion()
{
  VirtualRegionType centralRegion = this->GetVirtualDomainCentralRegion();
  SampleVirtualDomainWithRegion(centralRegion);
}

/**
 *  Sample the virtual domain with all voxels inside a region.
 */
template< typename TMetric >
void
RegistrationParameterScalesEstimator< TMetric >
::SampleVirtualDomainWithRegion(VirtualRegionType region)
{
  VirtualImageConstPointer image = this->m_Metric->GetVirtualImage();
  const SizeValueType total = region.GetNumberOfPixels();
  this->m_SamplePoints.resize(total);

  /* Set up an iterator within the user specified virtual image region. */
  typedef ImageRegionConstIteratorWithIndex<VirtualImageType> RegionIterator;
  RegionIterator regionIter( image, region );

  VirtualPointType point;

  /* Iterate over the image */
  SizeValueType count = 0;
  regionIter.GoToBegin();
  while( !regionIter.IsAtEnd() )
    {
    image->TransformIndexToPhysicalPoint( regionIter.GetIndex(), point );
    this->m_SamplePoints[count] = point;
    ++regionIter;
    ++count;
    }
}

/**
 *  Sample the virtual domain with the points at image corners.
 *  And store the results into this->m_SamplePoints.
 */
template< typename TMetric >
void
RegistrationParameterScalesEstimator< TMetric >
::SampleVirtualDomainWithCorners()
{
  VirtualImageConstPointer image = this->m_Metric->GetVirtualImage();

  VirtualRegionType region = this->m_Metric->GetVirtualRegion();
  VirtualIndexType firstCorner = region.GetIndex();
  VirtualIndexType corner;
  VirtualPointType point;

  VirtualSizeType size = region.GetSize();
  const unsigned int cornerNumber = 1 << VirtualDimension; // 2^Dimension

  this->m_SamplePoints.resize(cornerNumber);

  for(unsigned int i=0; i<cornerNumber; i++)
    {
    for (unsigned int d=0; d<VirtualDimension; d++)
      {
      const unsigned int bit = (unsigned int) (( i & (1 << d) ) != 0); // 0 or 1
      corner[d] = firstCorner[d] + bit * (size[d] - 1);
      }

    image->TransformIndexToPhysicalPoint(corner, point);
    this->m_SamplePoints[i] = point;
    }
}

/**
 * Sample the physical points of the virtual domain in a uniform random distribution.
 */
template< typename TMetric >
void
RegistrationParameterScalesEstimator< TMetric >
::SampleVirtualDomainRandomly()
{
  VirtualImageConstPointer image = this->m_Metric->GetVirtualImage();

  if (m_NumberOfRandomSamples == 0)
    {
    const SizeValueType total = this->m_Metric->GetVirtualRegion().GetNumberOfPixels();
    if (total <= SizeOfSmallDomain)
      {
      this->m_NumberOfRandomSamples = total;
      }
    else
      {
      FloatType ratio = 1 + std::log((FloatType)total/SizeOfSmallDomain);
      //ratio >= 1 since total/SizeOfSmallDomain > 1

      this->m_NumberOfRandomSamples = static_cast<int>(SizeOfSmallDomain * ratio);
      if (m_NumberOfRandomSamples > total)
        {
        this->m_NumberOfRandomSamples = total;
        }
      }
    }

  this->m_SamplePoints.resize(m_NumberOfRandomSamples);

  // Set up a random iterator within the user specified virtual image region.
  typedef ImageRandomConstIteratorWithIndex<VirtualImageType> RandomIterator;
  RandomIterator randIter( image, this->m_Metric->GetVirtualRegion() );

  VirtualPointType point;

  randIter.SetNumberOfSamples( this->m_NumberOfRandomSamples );
  randIter.GoToBegin();
  for (SizeValueType i=0; i<m_NumberOfRandomSamples; i++)
    {
    image->TransformIndexToPhysicalPoint( randIter.GetIndex(), point );
    this->m_SamplePoints[i] = point;
    ++randIter;
    }
}

/**
 * Sample the virtual domain using a point set.
 */
template< typename TMetric >
void
RegistrationParameterScalesEstimator< TMetric >
::SampleVirtualDomainWithPointSet()
{
  /* The virtual domain point set must already be supplied */
  if( ! this->m_VirtualDomainPointSet )
    {
    itkExceptionMacro("The virtual domain point set has not been set.");
    }
  if( this->m_VirtualDomainPointSet->GetNumberOfPoints() < 1 )
    {
    itkExceptionMacro("The virtual domain point set has no points.");
    }

  this->m_SamplePoints.resize( this->m_VirtualDomainPointSet->GetNumberOfPoints() );

  typename VirtualPointSetType::PointsContainerConstIterator it( this->m_VirtualDomainPointSet->GetPoints()->Begin() );
  SizeValueType count = 0;
  while( it != this->m_VirtualDomainPointSet->GetPoints()->End() )
    {
    this->m_SamplePoints[count] = it.Value();
    ++count;
    ++it;
    }
}

/**
 * Sample the virtual domain fully with all pixels.
 */
template< typename TMetric >
void
RegistrationParameterScalesEstimator< TMetric >
::SampleVirtualDomainFully()
{
  VirtualRegionType region = this->m_Metric->GetVirtualRegion();
  this->SampleVirtualDomainWithRegion(region);
}

/**
 * Print the information about this class.
 */
template< typename TMetric >
void
RegistrationParameterScalesEstimator< TMetric >
::PrintSelf(std::ostream& os, Indent indent) const
{
  Superclass::PrintSelf(os,indent);

  os << indent << "MetricType   = " << std::endl;
  os << indent << typeid(MetricType).name()  << std::endl;

  os << indent << "m_SamplePoints.size = " << std::endl;
  os << indent << this->m_SamplePoints.size()  << std::endl;

  os << indent << "m_TransformForward = " << this->m_TransformForward << std::endl;
  os << indent << "m_SamplingStrategy = " << this->m_SamplingStrategy << std::endl;

  os << indent << "m_VirtualDomainPointSet = " << this->m_VirtualDomainPointSet.GetPointer() << std::endl;
}

}  // namespace itk

#endif /* itkRegistrationParameterScalesEstimator_hxx */