This file is indexed.

/usr/include/ITK-4.9/itkRenyiEntropyThresholdCalculator.hxx is in libinsighttoolkit4-dev 4.9.0-4ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#ifndef itkRenyiEntropyThresholdCalculator_hxx
#define itkRenyiEntropyThresholdCalculator_hxx

#include "itkRenyiEntropyThresholdCalculator.h"
#include "itkProgressReporter.h"
#include "vnl/vnl_math.h"

namespace itk
{
/*
 * Compute the RenyiEntropy's threshold
 */
template<typename THistogram, typename TOutput>
void
RenyiEntropyThresholdCalculator<THistogram, TOutput>
::GenerateData(void)
{
  const HistogramType * histogram = this->GetInput();

  TotalAbsoluteFrequencyType total = histogram->GetTotalFrequency();
  if( total == NumericTraits< TotalAbsoluteFrequencyType >::ZeroValue() )
    {
    itkExceptionMacro(<< "Histogram is empty");
    }
  m_Size = histogram->GetSize( 0 );
  ProgressReporter progress( this, 0, m_Size );
  if( m_Size == 1 )
    {
    this->GetOutput()->Set( static_cast<OutputType>(histogram->GetMeasurement( 0, 0 )) );
    return;
    }

  const double tolerance = vnl_math::eps;

  InstanceIdentifier ih;

  std::vector<double> norm_histo(m_Size); /* normalized histogram */
  std::vector<double> P1(m_Size);  /* cumulative normalized histogram */
  std::vector<double> P2(m_Size);

  for(ih = 0; ih < m_Size; ih++ )
    {
    norm_histo[ih] = static_cast< double >( histogram->GetFrequency(ih, 0) ) / static_cast< double >( total );
    }

  P1[0]=norm_histo[0];
  P2[0]=1.0-P1[0];
  for(ih = 1; ih < m_Size; ih++ )
    {
    P1[ih]= P1[ih-1] + norm_histo[ih];
    P2[ih]= 1.0 - P1[ih];
    }

  /* Determine the first non-zero bin */
  m_FirstBin=0;
  for(ih = 0; ih < m_Size; ih++ )
    {
    if( !( std::abs( P1[ih] ) < tolerance ) )
      {
      m_FirstBin = ih;
      break;
      }
    }

  /* Determine the last non-zero bin */
  m_LastBin = static_cast< InstanceIdentifier >( m_Size - 1 );
  for(ih = m_Size - 1; ih >= m_FirstBin; ih-- )
    {
    if( !( std::abs( P2[ih] ) < tolerance ) )
      {
      m_LastBin = ih;
      break;
      }
    }

  InstanceIdentifier t_star2 = this->MaxEntropyThresholding( histogram, norm_histo, P1, P2 );
  InstanceIdentifier t_star1 = this->MaxEntropyThresholding2( histogram, norm_histo, P1, P2 );
  InstanceIdentifier t_star3 = this->MaxEntropyThresholding3( histogram, norm_histo, P1, P2 );

  InstanceIdentifier tmp_var;

  /* Sort t_star values */
  if( t_star2 < t_star1 )
    {
    tmp_var = t_star1;
    t_star1 = t_star2;
    t_star2 = tmp_var;
    }
  if( t_star3 < t_star2 )
    {
    tmp_var = t_star2;
    t_star2 = t_star3;
    t_star3 = tmp_var;
    }
  if( t_star2 < t_star1 )
    {
    tmp_var = t_star1;
    t_star1 = t_star2;
    t_star2 = tmp_var;
    }

  double beta1 = 0.;
  double beta2 = 0.;
  double beta3 = 0.;

  // Adjust beta values
  // note t_star1, t_star2, t_star3 are unsigned
  if( std::abs( static_cast< double >( t_star1 ) - static_cast< double >( t_star2 ) ) <= 5. )
    {
    if( std::abs( static_cast< double >( t_star2 ) - static_cast< double >( t_star3 ) ) <= 5. )
      {
      beta1 = 1.;
      beta2 = 2.;
      beta3 = 1.;
      }
    else
      {
      beta1 = 0.;
      beta2 = 1.;
      beta3 = 3.;
      }
    }
  else
    {
    if( std::abs( static_cast< double >( t_star2 ) - static_cast< double >( t_star3 ) ) <= 5. )
      {
      beta1 = 3.;
      beta2 = 1.;
      beta3 = 0.;
      }
    else
      {
      beta1 = 1.;
      beta2 = 2.;
      beta3 = 1.;
      }
    }

  itkAssertInDebugAndIgnoreInReleaseMacro( t_star1 < m_Size );
  itkAssertInDebugAndIgnoreInReleaseMacro( t_star2 < m_Size );
  itkAssertInDebugAndIgnoreInReleaseMacro( t_star3 < m_Size );

  double omega = P1[t_star3] - P1[t_star1];

  // Determine the optimal threshold value
  double realOptThreshold = static_cast< double >( t_star1 ) * ( P1[t_star1]+ 0.25 * omega * beta1 ) +
      static_cast< double >( t_star2 ) * 0.25 * omega * beta2 +
      static_cast< double >( t_star3 ) * ( P2[t_star3] + 0.25 * omega * beta3 );

  InstanceIdentifier opt_threshold = static_cast< InstanceIdentifier >( realOptThreshold );

  this->GetOutput()->Set( static_cast<OutputType>( histogram->GetMeasurement( opt_threshold, 0 ) ) );
}

template<typename THistogram, typename TOutput>
typename RenyiEntropyThresholdCalculator<THistogram, TOutput>::InstanceIdentifier
RenyiEntropyThresholdCalculator<THistogram, TOutput>
::MaxEntropyThresholding( const HistogramType* histogram,
                          const std::vector< double >& normHisto,
                          const std::vector< double >& P1,
                          const std::vector< double >& P2 )
  {
  /* Maximum Entropy Thresholding - BEGIN */
  /* Calculate the total entropy each gray-level
     and find the threshold that maximizes it
  */
  InstanceIdentifier threshold = 0; // was MIN_INT in original code, but if an empty image is processed it gives an error later on.
  double max_ent = NumericTraits< double >::min(); /* max entropy */

  for( InstanceIdentifier it = m_FirstBin; it <= m_LastBin; it++ )
    {
    /* Entropy of the background pixels */
    double ent_back = 0.0;
    for( InstanceIdentifier ih = 0; ih <= it; ih++ )
      {
      if( histogram->GetFrequency(ih, 0) != NumericTraits< AbsoluteFrequencyType >::ZeroValue() )
        {
        double x = ( normHisto[ih] / P1[it] );
        ent_back -= x * std::log ( x );
        }
      }

    /* Entropy of the object pixels */
    double ent_obj = 0.0;
    for( InstanceIdentifier ih = it + 1; ih < m_Size; ih++ )
      {
      if( histogram->GetFrequency(ih, 0) != NumericTraits< AbsoluteFrequencyType >::ZeroValue() )
        {
        double x = ( normHisto[ih] / P2[it] );
        ent_obj -= x * std::log( x );
        }
      }

    /* Total entropy */
    double tot_ent = ent_back + ent_obj;

    // IJ.log(""+max_ent+"  "+tot_ent);

    if( max_ent < tot_ent )
      {
      max_ent = tot_ent;
      threshold = it;
      }
    }
  return threshold;
  }

template<typename THistogram, typename TOutput>
typename RenyiEntropyThresholdCalculator<THistogram, TOutput>::InstanceIdentifier
RenyiEntropyThresholdCalculator<THistogram, TOutput>
::MaxEntropyThresholding2( const HistogramType* itkNotUsed( histogram ),
                           const std::vector< double >& normHisto,
                           const std::vector< double >& P1,
                           const std::vector< double >& P2 )
  {
  /* Maximum Entropy Thresholding - END */
  InstanceIdentifier threshold = 0; //was MIN_INT in original code, but if an empty image is processed it gives an error later on.
  double max_ent = NumericTraits< double >::min();
  double alpha = 0.5; /* alpha parameter of the method */
  double term = 1.0 / ( 1.0 - alpha );

  for( InstanceIdentifier it = m_FirstBin; it <= m_LastBin; it++ )
    {
    /* Entropy of the background pixels */
    double ent_back = 0.0;
    for( InstanceIdentifier ih = 0; ih <= it; ih++ )
      {
      ent_back += std::sqrt( normHisto[ih] / P1[it] );
      }

    /* Entropy of the object pixels */
    double ent_obj = 0.0;
    for( InstanceIdentifier ih = it + 1; ih < m_Size; ih++ )
      {
      ent_obj += std::sqrt( normHisto[ih] / P2[it] );
      }

    /* Total entropy */
    double product = ent_back * ent_obj;
    double tot_ent = 0.;

    if( product > 0.0 )
      {
      tot_ent = term * std::log( ent_back * ent_obj );
      }

    if( tot_ent > max_ent )
      {
      max_ent = tot_ent;
      threshold = it;
      }
    }

  return threshold;
  }

template<typename THistogram, typename TOutput>
typename RenyiEntropyThresholdCalculator<THistogram, TOutput>::InstanceIdentifier
RenyiEntropyThresholdCalculator<THistogram, TOutput>
::MaxEntropyThresholding3( const HistogramType* itkNotUsed( histogram ),
                           const std::vector< double >& normHisto,
                           const std::vector< double >& P1,
                           const std::vector< double >& P2 )
  {
  InstanceIdentifier threshold = 0; //was MIN_INT in original code, but if an empty image is processed it gives an error later on.
  double max_ent = 0.0;
  double alpha = 2.0;
  double term = 1.0 / ( 1.0 - alpha );
  for( InstanceIdentifier it = m_FirstBin; it <= m_LastBin; it++ )
    {
    /* Entropy of the background pixels */
    double ent_back = 0.0;
    for( InstanceIdentifier ih = 0; ih <= it; ih++ )
      {
      double x = normHisto[ih] / P1[it];
      ent_back += x * x;
      }

    /* Entropy of the object pixels */
    double ent_obj = 0.0;
    for( InstanceIdentifier ih = it + 1; ih < m_Size; ih++ )
      {
      double x = normHisto[ih] / P2[it];
      ent_obj += x * x;
      }

    /* Total entropy */
    double tot_ent = 0.0;
    double product = ent_back * ent_obj;
    if( product > 0.0 )
      {
      tot_ent = term * std::log( product );
      }

    if( tot_ent > max_ent )
      {
      max_ent = tot_ent;
      threshold = it;
      }
    }

  return threshold;
  }
} // end namespace itk

#endif