/usr/include/ITK-4.9/itkScalarAnisotropicDiffusionFunction.hxx is in libinsighttoolkit4-dev 4.9.0-4ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 | /*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkScalarAnisotropicDiffusionFunction_hxx
#define itkScalarAnisotropicDiffusionFunction_hxx
#include "itkConstNeighborhoodIterator.h"
#include "itkNeighborhoodInnerProduct.h"
#include "itkNeighborhoodAlgorithm.h"
#include "itkDerivativeOperator.h"
#include "itkScalarAnisotropicDiffusionFunction.h"
namespace itk
{
template< typename TImage >
void
ScalarAnisotropicDiffusionFunction< TImage >
::CalculateAverageGradientMagnitudeSquared(TImage *ip)
{
typedef ConstNeighborhoodIterator< TImage > RNI_type;
typedef ConstNeighborhoodIterator< TImage > SNI_type;
typedef NeighborhoodAlgorithm::ImageBoundaryFacesCalculator< TImage > BFC_type;
typedef typename NumericTraits<PixelType>::AccumulateType AccumulateType;
unsigned int i;
ZeroFluxNeumannBoundaryCondition< TImage > bc;
AccumulateType accumulator;
PixelRealType val;
SizeValueType counter;
BFC_type bfc;
typename BFC_type::FaceListType faceList;
typename RNI_type::RadiusType radius;
typename BFC_type::FaceListType::iterator fit;
RNI_type iterator_list[ImageDimension];
SNI_type face_iterator_list[ImageDimension];
DerivativeOperator< PixelType,
ImageDimension > operator_list[ImageDimension];
SizeValueType Stride[ImageDimension];
SizeValueType Center[ImageDimension];
// Set up the derivative operators, one for each dimension
for ( i = 0; i < ImageDimension; ++i )
{
operator_list[i].SetOrder(1);
operator_list[i].SetDirection(i);
operator_list[i].CreateDirectional();
radius[i] = operator_list[i].GetRadius()[i];
}
// Get the various region "faces" that are on the data set boundary.
faceList = bfc(ip, ip->GetRequestedRegion(), radius);
fit = faceList.begin();
// Now do the actual processing
accumulator = NumericTraits< AccumulateType >::ZeroValue();
counter = NumericTraits< SizeValueType >::ZeroValue();
// First process the non-boundary region
// Instead of maintaining a single N-d neighborhood of pointers,
// we maintain a list of 1-d neighborhoods along each axial direction.
// This is more efficient for higher dimensions.
for ( i = 0; i < ImageDimension; ++i )
{
iterator_list[i] = RNI_type(operator_list[i].GetRadius(), ip, *fit);
iterator_list[i].GoToBegin();
Center[i] = iterator_list[i].Size() / 2;
Stride[i] = iterator_list[i].GetStride(i);
}
while ( !iterator_list[0].IsAtEnd() )
{
counter++;
for ( i = 0; i < ImageDimension; ++i )
{
val = iterator_list[i].GetPixel(Center[i] + Stride[i])
- iterator_list[i].GetPixel(Center[i] - Stride[i]);
PixelRealType tempval = val / -2.0f;
val = tempval * this->m_ScaleCoefficients[i];
accumulator += val * val;
++iterator_list[i];
}
}
// Go on to the next region(s). These are on the boundary faces.
++fit;
while ( fit != faceList.end() )
{
for ( i = 0; i < ImageDimension; ++i )
{
face_iterator_list[i] = SNI_type(operator_list[i].GetRadius(), ip,
*fit);
face_iterator_list[i].OverrideBoundaryCondition(&bc);
face_iterator_list[i].GoToBegin();
Center[i] = face_iterator_list[i].Size() / 2;
Stride[i] = face_iterator_list[i].GetStride(i);
}
while ( !face_iterator_list[0].IsAtEnd() )
{
counter++;
for ( i = 0; i < ImageDimension; ++i )
{
val = face_iterator_list[i].GetPixel(Center[i] + Stride[i])
- face_iterator_list[i].GetPixel(Center[i] - Stride[i]);
PixelRealType tempval = val / -2.0f;
val = tempval * this->m_ScaleCoefficients[i];
accumulator += val * val;
++face_iterator_list[i];
}
}
++fit;
}
this->SetAverageGradientMagnitudeSquared( (double)( accumulator / counter ) );
}
} // end namespace itk
#endif
|