This file is indexed.

/usr/include/ITK-4.9/itkScalarAnisotropicDiffusionFunction.hxx is in libinsighttoolkit4-dev 4.9.0-4ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkScalarAnisotropicDiffusionFunction_hxx
#define itkScalarAnisotropicDiffusionFunction_hxx

#include "itkConstNeighborhoodIterator.h"
#include "itkNeighborhoodInnerProduct.h"
#include "itkNeighborhoodAlgorithm.h"
#include "itkDerivativeOperator.h"
#include "itkScalarAnisotropicDiffusionFunction.h"

namespace itk
{
template< typename TImage >
void
ScalarAnisotropicDiffusionFunction< TImage >
::CalculateAverageGradientMagnitudeSquared(TImage *ip)
{
  typedef ConstNeighborhoodIterator< TImage >                           RNI_type;
  typedef ConstNeighborhoodIterator< TImage >                           SNI_type;
  typedef NeighborhoodAlgorithm::ImageBoundaryFacesCalculator< TImage > BFC_type;
  typedef typename NumericTraits<PixelType>::AccumulateType             AccumulateType;

  unsigned int                               i;
  ZeroFluxNeumannBoundaryCondition< TImage > bc;
  AccumulateType                             accumulator;
  PixelRealType                              val;
  SizeValueType                              counter;
  BFC_type                                   bfc;
  typename BFC_type::FaceListType faceList;
  typename RNI_type::RadiusType radius;
  typename BFC_type::FaceListType::iterator fit;

  RNI_type iterator_list[ImageDimension];
  SNI_type face_iterator_list[ImageDimension];
  DerivativeOperator< PixelType,
                      ImageDimension > operator_list[ImageDimension];

  SizeValueType Stride[ImageDimension];
  SizeValueType Center[ImageDimension];

  // Set up the derivative operators, one for each dimension
  for ( i = 0; i < ImageDimension; ++i )
    {
    operator_list[i].SetOrder(1);
    operator_list[i].SetDirection(i);
    operator_list[i].CreateDirectional();
    radius[i] = operator_list[i].GetRadius()[i];
    }

  // Get the various region "faces" that are on the data set boundary.
  faceList = bfc(ip, ip->GetRequestedRegion(), radius);
  fit      = faceList.begin();

  // Now do the actual processing
  accumulator = NumericTraits< AccumulateType >::ZeroValue();
  counter     = NumericTraits< SizeValueType >::ZeroValue();

  // First process the non-boundary region

  // Instead of maintaining a single N-d neighborhood of pointers,
  // we maintain a list of 1-d neighborhoods along each axial direction.
  // This is more efficient for higher dimensions.
  for ( i = 0; i < ImageDimension; ++i )
    {
    iterator_list[i] = RNI_type(operator_list[i].GetRadius(), ip, *fit);
    iterator_list[i].GoToBegin();
    Center[i] = iterator_list[i].Size() / 2;
    Stride[i] = iterator_list[i].GetStride(i);
    }
  while ( !iterator_list[0].IsAtEnd() )
    {
    counter++;
    for ( i = 0; i < ImageDimension; ++i )
      {
      val = iterator_list[i].GetPixel(Center[i] + Stride[i])
            - iterator_list[i].GetPixel(Center[i] - Stride[i]);
      PixelRealType tempval = val / -2.0f;
      val = tempval * this->m_ScaleCoefficients[i];
      accumulator += val * val;
      ++iterator_list[i];
      }
    }

  // Go on to the next region(s).  These are on the boundary faces.
  ++fit;
  while ( fit != faceList.end() )
    {
    for ( i = 0; i < ImageDimension; ++i )
      {
      face_iterator_list[i] = SNI_type(operator_list[i].GetRadius(), ip,
                                       *fit);
      face_iterator_list[i].OverrideBoundaryCondition(&bc);
      face_iterator_list[i].GoToBegin();
      Center[i] = face_iterator_list[i].Size() / 2;
      Stride[i] = face_iterator_list[i].GetStride(i);
      }

    while ( !face_iterator_list[0].IsAtEnd() )
      {
      counter++;
      for ( i = 0; i < ImageDimension; ++i )
        {
        val = face_iterator_list[i].GetPixel(Center[i] + Stride[i])
              - face_iterator_list[i].GetPixel(Center[i] - Stride[i]);
        PixelRealType tempval = val / -2.0f;
        val = tempval * this->m_ScaleCoefficients[i];
        accumulator += val * val;
        ++face_iterator_list[i];
        }
      }
    ++fit;
    }

  this->SetAverageGradientMagnitudeSquared( (double)( accumulator / counter ) );
}
} // end namespace itk

#endif