/usr/include/ITK-4.9/itkShapePriorMAPCostFunction.hxx is in libinsighttoolkit4-dev 4.9.0-4ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 | /*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkShapePriorMAPCostFunction_hxx
#define itkShapePriorMAPCostFunction_hxx
#include "itkShapePriorMAPCostFunction.h"
namespace itk
{
/**
* Constructor
*/
template< typename TFeatureImage, typename TOutputPixel >
ShapePriorMAPCostFunction< TFeatureImage, TOutputPixel >
::ShapePriorMAPCostFunction()
{
m_GaussianFunction = GaussianKernelFunction<double>::New();
m_ShapeParameterMeans = ArrayType(1);
m_ShapeParameterMeans.Fill(0.0);
m_ShapeParameterStandardDeviations = ArrayType(1);
m_ShapeParameterStandardDeviations.Fill(0.0);
m_Weights.Fill(1.0);
}
/**
* PrintSelf
*/
template< typename TFeatureImage, typename TOutputPixel >
void
ShapePriorMAPCostFunction< TFeatureImage, TOutputPixel >
::PrintSelf(std::ostream & os, Indent indent) const
{
Superclass::PrintSelf(os, indent);
os << indent << "ShapeParameterMeans: " << m_ShapeParameterMeans << std::endl;
os << indent << "ShapeParameterStandardDeviations: ";
os << m_ShapeParameterStandardDeviations << std::endl;
os << indent << "Weights: " << m_Weights << std::endl;
}
/**
*
*/
template< typename TFeatureImage, typename TOutputPixel >
typename ShapePriorMAPCostFunction< TFeatureImage, TOutputPixel >
::MeasureType
ShapePriorMAPCostFunction< TFeatureImage, TOutputPixel >
::ComputeLogInsideTerm(const ParametersType & parameters) const
{
this->m_ShapeFunction->SetParameters(parameters);
typename NodeContainerType::ConstIterator iter = this->GetActiveRegion()->Begin();
typename NodeContainerType::ConstIterator end = this->GetActiveRegion()->End();
MeasureType counter = 0.0;
// count the number of pixels inside the current contour but outside the
// current shape
while ( iter != end )
{
NodeType node = iter.Value();
typename ShapeFunctionType::PointType point;
this->GetFeatureImage()->TransformIndexToPhysicalPoint(node.GetIndex(), point);
if ( node.GetValue() <= 0.0 )
{
double value = this->m_ShapeFunction->Evaluate(point);
if ( value > 0.0 )
{
counter += 1.0;
}
else if ( value > -1.0 )
{
counter += ( 1.0 + value );
}
}
++iter;
}
MeasureType output = counter * m_Weights[0];
return output;
}
/**
*
*/
template< typename TFeatureImage, typename TOutputPixel >
typename ShapePriorMAPCostFunction< TFeatureImage, TOutputPixel >
::MeasureType
ShapePriorMAPCostFunction< TFeatureImage, TOutputPixel >
::ComputeLogShapePriorTerm(const ParametersType & parameters) const
{
// assume the shape parameters is from a independent gaussian distributions
MeasureType measure = 0.0;
for ( unsigned int j = 0; j < this->m_ShapeFunction->GetNumberOfShapeParameters(); j++ )
{
measure += vnl_math_sqr( ( parameters[j] - m_ShapeParameterMeans[j] )
/ m_ShapeParameterStandardDeviations[j] );
}
measure *= m_Weights[2];
return measure;
}
/**
*
*/
template< typename TFeatureImage, typename TOutputPixel >
typename ShapePriorMAPCostFunction< TFeatureImage, TOutputPixel >
::MeasureType
ShapePriorMAPCostFunction< TFeatureImage, TOutputPixel >
::ComputeLogGradientTerm(const ParametersType & parameters) const
{
this->m_ShapeFunction->SetParameters(parameters);
typename NodeContainerType::ConstIterator iter = this->GetActiveRegion()->Begin();
typename NodeContainerType::ConstIterator end = this->GetActiveRegion()->End();
MeasureType sum = 0.0;
// Assume that ( 1 - FeatureImage ) approximates a Gaussian (zero mean, unit
// variance)
// along the normal of the evolving contour.
// The GradientTerm is then given by a Laplacian of the goodness of fit of
// the Gaussian.
while ( iter != end )
{
NodeType node = iter.Value();
typename ShapeFunctionType::PointType point;
this->GetFeatureImage()->TransformIndexToPhysicalPoint(node.GetIndex(), point);
sum += vnl_math_sqr( m_GaussianFunction->Evaluate( this->m_ShapeFunction->Evaluate(point) )
- 1.0 + this->GetFeatureImage()->GetPixel( node.GetIndex() ) );
++iter;
}
sum *= m_Weights[1];
// std::cout << sum << " ";
return sum;
}
/**
*
*/
template< typename TFeatureImage, typename TOutputPixel >
typename ShapePriorMAPCostFunction< TFeatureImage, TOutputPixel >
::MeasureType
ShapePriorMAPCostFunction< TFeatureImage, TOutputPixel >
::ComputeLogPosePriorTerm( const ParametersType & itkNotUsed(parameters) ) const
{
return 0.0;
}
/**
*
*/
template< typename TFeatureImage, typename TOutputPixel >
void
ShapePriorMAPCostFunction< TFeatureImage, TOutputPixel >
::Initialize() throw ( ExceptionObject )
{
this->Superclass::Initialize();
// check if the mean and variances array are of the right size
if ( m_ShapeParameterMeans.Size() <
this->m_ShapeFunction->GetNumberOfShapeParameters() )
{
itkExceptionMacro(<< "ShapeParameterMeans does not have at least "
<< this->m_ShapeFunction->GetNumberOfShapeParameters()
<< " number of elements.");
}
if ( m_ShapeParameterStandardDeviations.Size() <
this->m_ShapeFunction->GetNumberOfShapeParameters() )
{
itkExceptionMacro(<< "ShapeParameterStandardDeviations does not have at least "
<< this->m_ShapeFunction->GetNumberOfShapeParameters()
<< " number of elements.");
}
}
} // end namespace itk
#endif
|