This file is indexed.

/usr/include/ITK-4.9/itkShapedFloodFilledFunctionConditionalConstIterator.hxx is in libinsighttoolkit4-dev 4.9.0-4ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkShapedFloodFilledFunctionConditionalConstIterator_hxx
#define itkShapedFloodFilledFunctionConditionalConstIterator_hxx

#include "itkShapedFloodFilledFunctionConditionalConstIterator.h"
#include "itkImageRegionConstIterator.h"

namespace itk
{
template< typename TImage, typename TFunction >
ShapedFloodFilledFunctionConditionalConstIterator< TImage, TFunction >
::ShapedFloodFilledFunctionConditionalConstIterator(const ImageType *imagePtr,
                                                    FunctionType *fnPtr,
                                                    IndexType startIndex):
  m_FullyConnected(false)
{
  this->m_Image = imagePtr;
  m_Function = fnPtr;
  m_Seeds.push_back (startIndex);

  // Set up the temporary image
  this->InitializeIterator();
}

template< typename TImage, typename TFunction >
ShapedFloodFilledFunctionConditionalConstIterator< TImage, TFunction >
::ShapedFloodFilledFunctionConditionalConstIterator(const ImageType *imagePtr,
                                                    FunctionType *fnPtr,
                                                    std::vector< IndexType > & startIndex):
  m_Function(fnPtr),
  m_FullyConnected(false)
{
  this->m_Image = imagePtr; // can not be done in the initialization list

  unsigned int i;
  for ( i = 0; i < startIndex.size(); i++ )
    {
    m_Seeds.push_back (startIndex[i]);
    }

  // Set up the temporary image
  this->InitializeIterator();
}

template< typename TImage, typename TFunction >
ShapedFloodFilledFunctionConditionalConstIterator< TImage, TFunction >
::ShapedFloodFilledFunctionConditionalConstIterator(const ImageType *imagePtr,
                                                    FunctionType *fnPtr):
  m_FullyConnected(false)
{
  this->m_Image = imagePtr;
  m_Function = fnPtr;

  // Set up the temporary image
  this->InitializeIterator();
}

template< typename TImage, typename TFunction >
void
ShapedFloodFilledFunctionConditionalConstIterator< TImage, TFunction >
::InitializeIterator()
{
  // Get the origin and spacing from the image in simple arrays
  m_ImageOrigin  = this->m_Image->GetOrigin();
  m_ImageSpacing = this->m_Image->GetSpacing();
  m_ImageRegion  = this->m_Image->GetBufferedRegion();

  // Build and setup the neighborhood iterator
  typename NeighborhoodIteratorType::RadiusType radius; radius.Fill(1);

  NeighborhoodIteratorType tmp_iter(radius, this->m_Image, m_ImageRegion);
  m_NeighborhoodIterator = tmp_iter;

  setConnectivity(&m_NeighborhoodIterator, m_FullyConnected);

  // Build a temporary image of chars for use in the flood algorithm
  m_TempPtr = TTempImage::New();
  typename TTempImage::RegionType tempRegion = this->m_Image->GetBufferedRegion();

  m_TempPtr->SetLargestPossibleRegion(tempRegion);
  m_TempPtr->SetBufferedRegion(tempRegion);
  m_TempPtr->SetRequestedRegion(tempRegion);
  m_TempPtr->Allocate(true); // initialize buffer to zero

  // Initialize the queue by adding the start index assuming one of
  // the m_Seeds is "inside" This might not be true, in which
  // case it's up to the programmer to specify a correct starting
  // position later (using FindSeedPixel).  Must make sure that the
  // seed is inside the buffer before touching pixels.
  this->m_IsAtEnd = true;
  for ( unsigned int i = 0; i < m_Seeds.size(); i++ )
    {
    if ( m_ImageRegion.IsInside (m_Seeds[i]) )
      {
      m_IndexStack.push(m_Seeds[i]);
      this->m_IsAtEnd = false;
      }
    }
}

template< typename TImage, typename TFunction >
void
ShapedFloodFilledFunctionConditionalConstIterator< TImage, TFunction >
::FindSeedPixel()
{
  // Create an iterator that will walk the input image
  typedef typename itk::ImageRegionConstIterator< TImage > IRIType;
  IRIType it = IRIType( this->m_Image, this->m_Image->GetBufferedRegion() );

  // Now we search the input image for the first pixel which is inside
  // the function of interest
  m_Seeds.clear();
  for ( it.GoToBegin(); !it.IsAtEnd(); ++it )
    {
    if ( this->IsPixelIncluded( it.GetIndex() ) )
      {
      m_Seeds.push_back ( it.GetIndex() );

      // We need to reset the "beginning" now that we have a real seed
      this->GoToBegin();

      return;
      }
    }
}

template< typename TImage, typename TFunction >
void
ShapedFloodFilledFunctionConditionalConstIterator< TImage, TFunction >
::FindSeedPixels()
{
  // Create an iterator that will walk the input image
  typedef typename itk::ImageRegionConstIterator< TImage > IRIType;
  IRIType it = IRIType( this->m_Image, this->m_Image->GetBufferedRegion() );

  // Now we search the input image for the first pixel which is inside
  // the function of interest
  m_Seeds.clear();
  bool found = false;
  for ( it.GoToBegin(); !it.IsAtEnd(); ++it )
    {
    if ( this->IsPixelIncluded( it.GetIndex() ) )
      {
      m_Seeds.push_back ( it.GetIndex() );
      found = true;
      }
    }
  if ( found )
    {
    // We need to reset the "beginning" now that we have a real seed
    this->GoToBegin();
    }
}

template< typename TImage, typename TFunction >
void
ShapedFloodFilledFunctionConditionalConstIterator< TImage, TFunction >
::DoFloodStep()
{
  // The index in the front of the queue should always be
  // valid and be inside since this is what the iterator
  // uses in the Set/Get methods. This is ensured by the
  // GoToBegin() method.

  // Take the index in the front of the queue
  const IndexType & topIndex = m_IndexStack.front();

  // We are explicitly not calling set location since only offsets of
  // the neighborhood iterator are accessed.
  typename NeighborhoodIteratorType::ConstIterator neighborIt =
    m_NeighborhoodIterator.Begin();
  const typename NeighborhoodIteratorType::ConstIterator neighborEnd =
    m_NeighborhoodIterator.End();

  for (; neighborIt != neighborEnd; ++neighborIt )
    {
    const OffsetType & offset = neighborIt.GetNeighborhoodOffset();
    const IndexType    tempIndex = topIndex + offset;

    // If this is a valid index and have not been tested,
    // then test it.
    if ( m_ImageRegion.IsInside(tempIndex) )
      {
      if ( m_TempPtr->GetPixel(tempIndex) == 0 )
        {
        // if it is inside, push it into the queue
        if ( this->IsPixelIncluded(tempIndex) )
          {
          m_IndexStack.push(tempIndex);
          m_TempPtr->SetPixel(tempIndex, 2);
          }
        else  // If the pixel is outside
          {
          // Mark the pixel as outside and remove it from the queue.
          m_TempPtr->SetPixel(tempIndex, 1);
          }
        }
      }
    } // Finished traversing neighbors

  // Now that all the potential neighbors have been
  // inserted we can get rid of the pixel in the front
  m_IndexStack.pop();

  if ( m_IndexStack.empty() )
    {
    this->m_IsAtEnd = true;
    }
}

template< typename TImage, typename TFunction >
void
ShapedFloodFilledFunctionConditionalConstIterator< TImage, TFunction >
::SetFullyConnected(const bool _arg)
{
  if ( this->m_FullyConnected != _arg )
    {
    this->m_FullyConnected = _arg;
    setConnectivity(&m_NeighborhoodIterator, m_FullyConnected);
    }
}

template< typename TImage, typename TFunction >
bool
ShapedFloodFilledFunctionConditionalConstIterator< TImage, TFunction >
::GetFullyConnected() const
{
  return this->m_FullyConnected;
}
} // end namespace itk

#endif