This file is indexed.

/usr/include/ITK-4.9/itkSurfaceSpatialObject.hxx is in libinsighttoolkit4-dev 4.9.0-4ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkSurfaceSpatialObject_hxx
#define itkSurfaceSpatialObject_hxx


#include "itkMath.h"
#include "itkSurfaceSpatialObject.h"

namespace itk
{
/** Constructor */
template< unsigned int TDimension >
SurfaceSpatialObject< TDimension >
::SurfaceSpatialObject()
{
  this->SetDimension(TDimension);
  this->SetTypeName("SurfaceSpatialObject");
  this->GetProperty()->SetRed(1);
  this->GetProperty()->SetGreen(0);
  this->GetProperty()->SetBlue(0);
  this->GetProperty()->SetAlpha(1);
  this->ComputeBoundingBox();
}

/** Destructor */
template< unsigned int TDimension >
SurfaceSpatialObject< TDimension >
::~SurfaceSpatialObject()
{}

/** Get the list of points composing the surface */
template< unsigned int TDimension >
typename SurfaceSpatialObject< TDimension >::PointListType &
SurfaceSpatialObject< TDimension >
::GetPoints()
{
  itkDebugMacro("Getting SurfacePoint list");
  return m_Points;
}
template< unsigned int TDimension >
const typename SurfaceSpatialObject< TDimension >::PointListType &
SurfaceSpatialObject< TDimension >
::GetPoints() const
{
  itkDebugMacro("Getting SurfacePoint list");
  return m_Points;
}

/** Set the list of points composing the surface */
template< unsigned int TDimension >
void
SurfaceSpatialObject< TDimension >
::SetPoints(PointListType & points)
{
  // in this function, passing a null pointer as argument will
  // just clear the list...
  m_Points.clear();

  typename PointListType::iterator it, end;
  it = points.begin();
  end = points.end();
  while ( it != end )
    {
    m_Points.push_back(*it);
    it++;
    }

  this->ComputeBoundingBox();
  this->Modified();
}

/** Print the surface object */
template< unsigned int TDimension >
void
SurfaceSpatialObject< TDimension >
::PrintSelf(std::ostream & os, Indent indent) const
{
  os << indent << "SurfaceSpatialObject(" << this << ")" << std::endl;
  os << indent << "ID: " << this->GetId() << std::endl;
  os << indent << "nb of points: "
     << static_cast< SizeValueType >( m_Points.size() ) << std::endl;
  Superclass::PrintSelf(os, indent);
}

/** Compute the bounds of the surface */
template< unsigned int TDimension >
bool
SurfaceSpatialObject< TDimension >
::ComputeLocalBoundingBox() const
{
  itkDebugMacro("Computing surface bounding box");

  if ( this->GetBoundingBoxChildrenName().empty()
       || strstr( typeid( Self ).name(),
                  this->GetBoundingBoxChildrenName().c_str() ) )
    {
    typename PointListType::const_iterator it  = m_Points.begin();
    typename PointListType::const_iterator end = m_Points.end();

    if ( it == end )
      {
      return false;
      }
    else
      {
      PointType pt =
        this->GetIndexToWorldTransform()->TransformPoint( ( *it ).GetPosition() );
      const_cast< BoundingBoxType * >( this->GetBounds() )->SetMinimum(pt);
      const_cast< BoundingBoxType * >( this->GetBounds() )->SetMaximum(pt);
      it++;
      while ( it != end )
        {
        pt = this->GetIndexToWorldTransform()->TransformPoint(
          ( *it ).GetPosition() );
        const_cast< BoundingBoxType * >( this->GetBounds() )->ConsiderPoint(pt);
        it++;
        }
      }
    }
  return true;
}

/** Test whether a point is inside or outside the object
 *  For computational speed purposes, it is faster if the method does not
 *  check the name of the class and the current depth */
template< unsigned int TDimension >
bool
SurfaceSpatialObject< TDimension >
::IsInside(const PointType & point) const
{
  typename PointListType::const_iterator it = m_Points.begin();
  typename PointListType::const_iterator itEnd = m_Points.end();

  if ( !this->SetInternalInverseTransformToWorldToIndexTransform() )
    {
    return false;
    }

  PointType transformedPoint =
    this->GetInternalInverseTransform()->TransformPoint(point);

  if ( this->GetBounds()->IsInside(transformedPoint) )
    {
    while ( it != itEnd )
      {
      if ( ( *it ).GetPosition() == transformedPoint )
        {
        return true;
        }
      it++;
      }
    }
  return false;
}

/** Return true is the given point is on the surface */
template< unsigned int TDimension >
bool
SurfaceSpatialObject< TDimension >
::IsInside(const PointType & point, unsigned int depth, char *name) const
{
  itkDebugMacro("Checking the point [" << point << "is on the surface");

  if ( name == ITK_NULLPTR )
    {
    if ( IsInside(point) )
      {
      return true;
      }
    }
  else if ( strstr(typeid( Self ).name(), name) )
    {
    if ( IsInside(point) )
      {
      return true;
      }
    }

  return Superclass::IsInside(point, depth, name);
}

/** Return true if the surface is evaluable at a specified point */
template< unsigned int TDimension >
bool
SurfaceSpatialObject< TDimension >
::IsEvaluableAt(const PointType & point,
                unsigned int depth, char *name) const
{
  itkDebugMacro("Checking if the surface is evaluable at " << point);
  return IsInside(point, depth, name);
}

/** Return 1 if the point is on the surface */
template< unsigned int TDimension >
bool
SurfaceSpatialObject< TDimension >
::ValueAt(const PointType & point, double & value, unsigned int depth,
          char *name) const
{
  itkDebugMacro("Getting the value of the surface at " << point);
  if ( IsInside(point, 0, name) )
    {
    value = this->GetDefaultInsideValue();
    return true;
    }
  else if ( Superclass::IsEvaluableAt(point, depth, name) )
    {
    Superclass::ValueAt(point, value, depth, name);
    return true;
    }
  value = this->GetDefaultOutsideValue();
  return false;
}

/** Approximate the normals of the surface */
template< unsigned int TDimension >
bool
SurfaceSpatialObject< TDimension >
::Approximate3DNormals()
{
  if ( TDimension != 3 )
    {
    itkExceptionMacro("Approximate3DNormals works only in 3D");
    }

  if ( m_Points.size() < 3 )
    {
    itkExceptionMacro("Approximate3DNormals requires at least 3 points");
    }

  typename PointListType::iterator it = m_Points.begin();
  typename PointListType::iterator itEnd = m_Points.end();

  while ( it != itEnd )
    {
    // Try to find 3 points close to the corresponding point
    SurfacePointType pt = *it;
    PointType        pos = ( *it ).GetPosition();

    std::list< int > badId;
    unsigned int     identifier[3];
    double           absvec = 0;
    do
      {
      identifier[0] = 0;
      identifier[1] = 0;
      identifier[2] = 0;

      float max[3];
      max[0] = 99999999;
      max[1] = 99999999;
      max[2] = 99999999;

      typename PointListType::const_iterator it2 = m_Points.begin();

      int i = 0;
      while ( it2 != m_Points.end() )
        {
        if ( it2 == it )
          {
          i++;
          it2++;
          continue;
          }

        bool                             badPoint = false;
        std::list< int >::const_iterator itBadId = badId.begin();
        while ( itBadId != badId.end() )
          {
          if ( *itBadId == i )
            {
            badPoint = true;
            break;
            }
          itBadId++;
          }

        if ( badPoint )
          {
          i++;
          it2++;
          continue;
          }

        PointType pos2 = ( *it2 ).GetPosition();
        float     distance = ( pos2[0] - pos[0] ) * ( pos2[0] - pos[0] ) + ( pos2[1] - pos[1] )
                             * ( pos2[1] - pos[1] ) + ( pos2[2] - pos[2] ) * ( pos2[2] - pos[2] );

        // Check that the point is not the same as some previously defined
        bool valid = true;
        for ( unsigned int j = 0; j < 3; j++ )
          {
          PointType p = m_Points[identifier[j]].GetPosition();
          float     d = ( pos2[0] - p[0] ) * ( pos2[0] - p[0] ) + ( pos2[1] - p[1] )
                        * ( pos2[1] - p[1] ) + ( pos2[2] - p[2] ) * ( pos2[2] - p[2] );
          if ( Math::AlmostEquals( d, 0.0f ) )
            {
            valid = false;
            break;
            }
          }

        if ( Math::AlmostEquals( distance, 0.0f ) || !valid )
          {
          i++;
          it2++;
          continue;
          }

        if ( distance < max[0] )
          {
          max[2] = max[1];
          max[1] = max[0];
          max[0] = distance;
          identifier[0] = i;
          }
        else if ( distance < max[1] )
          {
          max[2] = max[1];
          max[1] = distance;
          identifier[1] = i;
          }
        else if ( distance < max[2] )
          {
          max[2] = distance;
          identifier[2] = i;
          }
        i++;
        it2++;
        }

      if ( ( identifier[0] == identifier[1] )
           || ( identifier[1] == identifier[2] )
           || ( identifier[0] == identifier[2] )
            )
        {
        std::cout << "Cannot find 3 distinct points!" << std::endl;
        std::cout << identifier[0] << " : " << identifier[1] << " : " << identifier[2] << std::endl;
        std::cout << max[0] << " : " << max[1] << " : " << max[2] << std::endl;
        return false;
        }

      PointType v1 = m_Points[identifier[0]].GetPosition();
      PointType v2 = m_Points[identifier[1]].GetPosition();
      PointType v3 = m_Points[identifier[2]].GetPosition();

      double coa = -( v1[1] * ( v2[2] - v3[2] )
                      + v2[1] * ( v3[2] - v1[2] )
                      + v3[1] * ( v1[2] - v2[2] ) );
      double cob = -( v1[2] * ( v2[0] - v3[0] )
                      + v2[2] * ( v3[0] - v1[0] )
                      + v3[2] * ( v1[0] - v2[0] ) );
      double coc = -( v1[0] * ( v2[1] - v3[1] )
                      + v2[0] * ( v3[1] - v1[1] )
                      + v3[0] * ( v1[1] - v2[1] ) );

      absvec = -std::sqrt ( (double)( ( coa * coa ) + ( cob * cob ) + ( coc * coc ) ) );

      if ( Math::AlmostEquals( absvec, 0.0 ) )
        {
        badId.push_back(identifier[2]);
        }
      else
        {
        CovariantVectorType normal;
        normal[0] = coa / absvec;
        normal[1] = cob / absvec;
        normal[2] = coc / absvec;
        ( *it ).SetNormal(normal);
        }
      }
    while ( ( Math::AlmostEquals( absvec, 0.0 ) ) && ( badId.size() < m_Points.size() - 1 ) );

    if ( Math::AlmostEquals( absvec, 0.0 ) )
      {
      std::cout << "Approximate3DNormals Failed!" << std::endl;
      std::cout << identifier[0] << " : " << identifier[1] << " : " << identifier[2] << std::endl;
      std::cout << badId.size() << " : " << m_Points.size() - 1 << std::endl;
      return false;
      }

    it++;
    }

  return true;
}
} // end namespace itk

#endif