This file is indexed.

/usr/include/ITK-4.9/itkSymmetricSecondRankTensor.hxx is in libinsighttoolkit4-dev 4.9.0-4ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkSymmetricSecondRankTensor_hxx
#define itkSymmetricSecondRankTensor_hxx

#include "itkNumericTraitsTensorPixel.h"

namespace itk
{
/**
 * Assignment Operator from a scalar constant
 */
template< typename T, unsigned int NDimension >
SymmetricSecondRankTensor< T, NDimension > &
SymmetricSecondRankTensor< T, NDimension >
::operator=(const ComponentType & r)
{
  BaseArray::operator=(&r);
  return *this;
}

/**
 * Assigment from a plain array
 */
template< typename T, unsigned int NDimension >
SymmetricSecondRankTensor< T, NDimension > &
SymmetricSecondRankTensor< T, NDimension >
::operator=(const ComponentArrayType r)
{
  BaseArray::operator=(r);
  return *this;
}

/**
 * Returns a temporary copy of a vector
 */
template< typename T, unsigned int NDimension >
SymmetricSecondRankTensor< T, NDimension >
SymmetricSecondRankTensor< T, NDimension >
::operator+(const Self & r) const
{
  Self result;

  for ( unsigned int i = 0; i < InternalDimension; i++ )
    {
    result[i] = ( *this )[i] + r[i];
    }
  return result;
}

/**
 * Returns a temporary copy of a vector
 */
template< typename T, unsigned int NDimension >
SymmetricSecondRankTensor< T, NDimension >
SymmetricSecondRankTensor< T, NDimension >
::operator-(const Self & r) const
{
  Self result;

  for ( unsigned int i = 0; i < InternalDimension; i++ )
    {
    result[i] = ( *this )[i] - r[i];
    }
  return result;
}

/**
 * Performs addition in place
 */
template< typename T, unsigned int NDimension >
const SymmetricSecondRankTensor< T, NDimension > &
SymmetricSecondRankTensor< T, NDimension >
::operator+=(const Self & r)
{
  for ( unsigned int i = 0; i < InternalDimension; i++ )
    {
    ( *this )[i] += r[i];
    }
  return *this;
}

/**
 * Performs subtraction in place
 */
template< typename T, unsigned int NDimension >
const SymmetricSecondRankTensor< T, NDimension > &
SymmetricSecondRankTensor< T, NDimension >
::operator-=(const Self & r)
{
  for ( unsigned int i = 0; i < InternalDimension; i++ )
    {
    ( *this )[i] -= r[i];
    }
  return *this;
}

/**
 * Performs multiplication by a scalar, in place
 */
template< typename T, unsigned int NDimension >
const SymmetricSecondRankTensor< T, NDimension > &
SymmetricSecondRankTensor< T, NDimension >
::operator*=(const RealValueType & r)
{
  for ( unsigned int i = 0; i < InternalDimension; i++ )
    {
    ( *this )[i] *= r;
    }
  return *this;
}

/**
 * Performs division by a scalar, in place
 */
template< typename T, unsigned int NDimension >
const SymmetricSecondRankTensor< T, NDimension > &
SymmetricSecondRankTensor< T, NDimension >
::operator/=(const RealValueType & r)
{
  for ( unsigned int i = 0; i < InternalDimension; i++ )
    {
    ( *this )[i] /= r;
    }
  return *this;
}

/**
 * Performs multiplication with a scalar
 */
template< typename T, unsigned int NDimension >
SymmetricSecondRankTensor< T, NDimension >
SymmetricSecondRankTensor< T, NDimension >
::operator*(const RealValueType & r) const
{
  Self result;

  for ( unsigned int i = 0; i < InternalDimension; i++ )
    {
    result[i] = ( *this )[i] * r;
    }
  return result;
}

/**
 * Performs division by a scalar
 */
template< typename T, unsigned int NDimension >
SymmetricSecondRankTensor< T, NDimension >
SymmetricSecondRankTensor< T, NDimension >
::operator/(const RealValueType & r) const
{
  Self result;

  for ( unsigned int i = 0; i < InternalDimension; i++ )
    {
    result[i] = ( *this )[i] / r;
    }
  return result;
}

/**
 * Matrix notation access to elements
 */
template< typename T, unsigned int NDimension >
const typename SymmetricSecondRankTensor< T, NDimension >::ValueType &
SymmetricSecondRankTensor< T, NDimension >
::operator()(unsigned int row, unsigned int col) const
{
  unsigned int k;

  if ( row < col )
    {
    k = row * Dimension + col - row * ( row + 1 ) / 2;
    }
  else
    {
    k = col * Dimension + row - col * ( col + 1 ) / 2;
    }

  if ( k >= InternalDimension )
    {
    k = 0;
    }

  return ( *this )[k];
}

/**
 * Matrix notation access to elements
 */
template< typename T, unsigned int NDimension >
typename SymmetricSecondRankTensor< T, NDimension >::ValueType &
SymmetricSecondRankTensor< T, NDimension >
::operator()(unsigned int row, unsigned int col)
{
  unsigned int k;

  if ( row < col )
    {
    k = row * Dimension + col - row * ( row + 1 ) / 2;
    }
  else
    {
    k = col * Dimension + row - col * ( col + 1 ) / 2;
    }

  if ( k >= InternalDimension )
    {
    k = 0;
    }

  return ( *this )[k];
}

/**
 * Set the Tensor to an Identity.
 * Set ones in the diagonal and zeroes every where else.
 */
template< typename T, unsigned int NDimension >
void
SymmetricSecondRankTensor< T, NDimension >
::SetIdentity()
{
  this->Fill(NumericTraits< T >::ZeroValue());
  for ( unsigned int i = 0; i < Dimension; i++ )
    {
    ( *this )( i, i ) = NumericTraits< T >::OneValue();
    }
}

/**
 * Get the Trace
 */
template< typename T, unsigned int NDimension >
typename SymmetricSecondRankTensor< T, NDimension >::AccumulateValueType
SymmetricSecondRankTensor< T, NDimension >
::GetTrace() const
{
  AccumulateValueType trace = NumericTraits< AccumulateValueType >::ZeroValue();
  unsigned int        k = 0;

  for ( unsigned int i = 0; i < Dimension; i++ )
    {
    trace += ( *this )[k];
    k += ( Dimension - i );
    }
  return trace;
}

/**
 * Compute Eigen Values
 */
template< typename T, unsigned int NDimension >
void
SymmetricSecondRankTensor< T, NDimension >
::ComputeEigenValues(EigenValuesArrayType & eigenValues) const
{
  SymmetricEigenAnalysisType symmetricEigenSystem = SymmetricEigenAnalysisType(Dimension);

  MatrixType tensorMatrix;

  for ( unsigned int row = 0; row < Dimension; row++ )
    {
    for ( unsigned int col = 0; col < Dimension; col++ )
      {
      tensorMatrix[row][col] = ( *this )( row, col );
      }
    }

  symmetricEigenSystem.ComputeEigenValues(tensorMatrix, eigenValues);
}

/**
 * Compute Eigen analysis, it returns an array with eigen values
 * and a Matrix with eigen vectors
 */
template< typename T, unsigned int NDimension >
void
SymmetricSecondRankTensor< T, NDimension >
::ComputeEigenAnalysis(EigenValuesArrayType & eigenValues,
                       EigenVectorsMatrixType & eigenVectors) const
{
  SymmetricEigenAnalysisType symmetricEigenSystem = SymmetricEigenAnalysisType(Dimension);

  MatrixType tensorMatrix;

  for ( unsigned int row = 0; row < Dimension; row++ )
    {
    for ( unsigned int col = 0; col < Dimension; col++ )
      {
      tensorMatrix[row][col] = ( *this )( row, col );
      }
    }

  symmetricEigenSystem.ComputeEigenValuesAndVectors(
    tensorMatrix, eigenValues, eigenVectors);
}

/**
 * Set the Tensor to a Rotated version of the current tensor.
 * matrix * self * Transpose(matrix)
 *
 */
template<typename T,unsigned int NDimension>
template <typename TMatrixValueType>
SymmetricSecondRankTensor<T,NDimension>
SymmetricSecondRankTensor<T,NDimension>
::Rotate( const Matrix<TMatrixValueType, NDimension, NDimension> & m ) const
{
  Self result;
  typedef Matrix<double, NDimension, NDimension> RotationMatrixType;
  RotationMatrixType SCT; //self * Transpose(m)
  for(unsigned int r=0; r<NDimension; r++)
  {
    for(unsigned int c=0; c<NDimension; c++)
    {
      double sum = 0.0;
      for(unsigned int t=0; t<NDimension; t++)
      {
        sum += (*this)(r,t) * m(c,t);
      }
      SCT(r,c) = sum;
    }
  }
  //self = m * sct;
  for(unsigned int r=0; r<NDimension; r++)
  {
    for(unsigned int c=0; c<NDimension; c++)
    {
      double sum = 0.0;
      for(unsigned int t=0; t<NDimension; t++)
      {
        sum += m(r,t) * SCT(t,c);
      }
      (result)(r,c) = static_cast<T>( sum );
    }
  }
  return result;
}

/**
 * Pre-multiply the Tensor by a Matrix
 */
template< typename T, unsigned int NDimension >
typename SymmetricSecondRankTensor< T, NDimension >::MatrixType
SymmetricSecondRankTensor< T, NDimension >
::PreMultiply(const MatrixType & m) const
{
  MatrixType result;

  typedef typename NumericTraits< T >::AccumulateType AccumulateType;
  for ( unsigned int r = 0; r < NDimension; r++ )
    {
    for ( unsigned int c = 0; c < NDimension; c++ )
      {
      AccumulateType sum = NumericTraits< AccumulateType >::ZeroValue();
      for ( unsigned int t = 0; t < NDimension; t++ )
        {
        sum += m(r, t) * ( *this )( t, c );
        }
      result(r, c) = static_cast< T >( sum );
      }
    }
  return result;
}

/**
 * Post-multiply the Tensor by a Matrix
 */
template< typename T, unsigned int NDimension >
typename SymmetricSecondRankTensor< T, NDimension >::MatrixType
SymmetricSecondRankTensor< T, NDimension >
::PostMultiply(const MatrixType & m) const
{
  MatrixType result;

  typedef typename NumericTraits< T >::AccumulateType AccumulateType;
  for ( unsigned int r = 0; r < NDimension; r++ )
    {
    for ( unsigned int c = 0; c < NDimension; c++ )
      {
      AccumulateType sum = NumericTraits< AccumulateType >::ZeroValue();
      for ( unsigned int t = 0; t < NDimension; t++ )
        {
        sum += ( *this )( r, t ) * m(t, c);
        }
      result(r, c) = static_cast< T >( sum );
      }
    }
  return result;
}

/**
 * Print content to an ostream
 */
template< typename T, unsigned int NDimension >
std::ostream &
operator<<(std::ostream & os, const SymmetricSecondRankTensor< T, NDimension > & c)
{
  for ( unsigned int i = 0; i < c.GetNumberOfComponents(); i++ )
    {
    os <<  static_cast< typename NumericTraits< T >::PrintType >( c[i] ) << "  ";
    }
  return os;
}

/**
 * Read content from an istream
 */
template< typename T, unsigned int NDimension >
std::istream &
operator>>(std::istream & is, SymmetricSecondRankTensor< T, NDimension > & dt)
{
  for ( unsigned int i = 0; i < dt.GetNumberOfComponents(); i++ )
    {
    is >> dt[i];
    }
  return is;
}
} // end namespace itk

#endif