/usr/include/ITK-4.9/itkTimeVaryingVelocityFieldImageRegistrationMethodv4.hxx is in libinsighttoolkit4-dev 4.9.0-4ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 | /*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkTimeVaryingVelocityFieldImageRegistrationMethodv4_hxx
#define itkTimeVaryingVelocityFieldImageRegistrationMethodv4_hxx
#include "itkTimeVaryingVelocityFieldImageRegistrationMethodv4.h"
#include "itkConstNeighborhoodIterator.h"
#include "itkDisplacementFieldTransform.h"
#include "itkImageDuplicator.h"
#include "itkImportImageFilter.h"
#include "itkNeighborhoodAlgorithm.h"
#include "itkResampleImageFilter.h"
#include "itkStatisticsImageFilter.h"
#include "itkVectorMagnitudeImageFilter.h"
#include "itkWindowConvergenceMonitoringFunction.h"
namespace itk
{
/**
* Constructor
*/
template<typename TFixedImage, typename TMovingImage, typename TOutputTransform, typename TVirtualImage, typename TPointSet>
TimeVaryingVelocityFieldImageRegistrationMethodv4<TFixedImage, TMovingImage, TOutputTransform, TVirtualImage, TPointSet>
::TimeVaryingVelocityFieldImageRegistrationMethodv4() :
m_LearningRate( 0.25 ),
m_ConvergenceThreshold( 1.0e-7 ),
m_ConvergenceWindowSize( 10 )
{
this->m_NumberOfIterationsPerLevel.SetSize( 3 );
this->m_NumberOfIterationsPerLevel[0] = 20;
this->m_NumberOfIterationsPerLevel[1] = 30;
this->m_NumberOfIterationsPerLevel[2] = 40;
}
template<typename TFixedImage, typename TMovingImage, typename TOutputTransform, typename TVirtualImage, typename TPointSet>
TimeVaryingVelocityFieldImageRegistrationMethodv4<TFixedImage, TMovingImage, TOutputTransform, TVirtualImage, TPointSet>
::~TimeVaryingVelocityFieldImageRegistrationMethodv4()
{
}
/*
* Start the optimization at each level. We just do a basic gradient descent operation.
*/
template<typename TFixedImage, typename TMovingImage, typename TOutputTransform, typename TVirtualImage, typename TPointSet>
void
TimeVaryingVelocityFieldImageRegistrationMethodv4<TFixedImage, TMovingImage, TOutputTransform, TVirtualImage, TPointSet>
::StartOptimization()
{
typedef ImageDuplicator<DisplacementFieldType> DisplacementFieldDuplicatorType;
typedef DisplacementFieldTransform<RealType, ImageDimension> DisplacementFieldTransformType;
typename DisplacementFieldType::PixelType zeroVector;
zeroVector.Fill( 0 );
// This transform is used for the fixed image
typedef itk::IdentityTransform<RealType, ImageDimension> IdentityTransformType;
typename IdentityTransformType::Pointer identityTransform = IdentityTransformType::New();
identityTransform->SetIdentity();
typename DisplacementFieldTransformType::Pointer identityDisplacementFieldTransform = DisplacementFieldTransformType::New();
// This transform gets used for the moving image
typename DisplacementFieldDuplicatorType::Pointer fieldDuplicatorIdentity = DisplacementFieldDuplicatorType::New();
TimeVaryingVelocityFieldPointer velocityField = this->m_OutputTransform->GetModifiableVelocityField();
IndexValueType numberOfTimePoints = velocityField->GetLargestPossibleRegion().GetSize()[ImageDimension];
SizeValueType numberOfIntegrationSteps = numberOfTimePoints + 2;
const typename TimeVaryingVelocityFieldType::RegionType & largestRegion = velocityField->GetLargestPossibleRegion();
const SizeValueType numberOfPixelsPerTimePoint = largestRegion.GetNumberOfPixels() / numberOfTimePoints;
const typename TimeVaryingVelocityFieldType::SpacingType velocityFieldSpacing = velocityField->GetSpacing();
typename VirtualImageType::ConstPointer virtualDomainImage;
typename MultiMetricType::Pointer multiMetric = dynamic_cast<MultiMetricType *>( this->m_Metric.GetPointer() );
if( multiMetric )
{
typename ImageMetricType::Pointer metricQueue = dynamic_cast<ImageMetricType *>( multiMetric->GetMetricQueue()[0].GetPointer() );
if( metricQueue.IsNotNull() )
{
virtualDomainImage = metricQueue->GetVirtualImage();
}
else
{
itkExceptionMacro( "ERROR: Invalid conversion from the multi metric queue." );
}
}
else
{
typename ImageMetricType::Pointer metric = dynamic_cast<ImageMetricType *>( this->m_Metric.GetPointer() );
if( metric.IsNotNull() )
{
virtualDomainImage = metric->GetVirtualImage();
}
else
{
itkExceptionMacro( "ERROR: Invalid metric conversion." );
}
}
typedef typename ImageMetricType::DerivativeType MetricDerivativeType;
const typename MetricDerivativeType::SizeValueType metricDerivativeSize = virtualDomainImage->GetLargestPossibleRegion().GetNumberOfPixels() * ImageDimension;
MetricDerivativeType metricDerivative( metricDerivativeSize );
// Warp the moving image based on the composite transform (not including the current
// time varying velocity field transform to be optimized).
// Instantiate the update derivative for all vectors of the velocity field
DerivativeType updateDerivative( numberOfPixelsPerTimePoint * numberOfTimePoints * ImageDimension );
DerivativeType lastUpdateDerivative( numberOfPixelsPerTimePoint * numberOfTimePoints * ImageDimension );
lastUpdateDerivative.Fill( 0 );
updateDerivative.Fill( 0 );
// Monitor the convergence
typedef itk::Function::WindowConvergenceMonitoringFunction<RealType> ConvergenceMonitoringType;
typename ConvergenceMonitoringType::Pointer convergenceMonitoring = ConvergenceMonitoringType::New();
convergenceMonitoring->SetWindowSize( this->m_ConvergenceWindowSize );
// m_OutputTransform is the velocity field
IterationReporter reporter( this, 0, 1 );
while( this->m_CurrentIteration++ < this->m_NumberOfIterationsPerLevel[this->m_CurrentLevel] && !this->m_IsConverged )
{
updateDerivative.Fill( 0 );
MeasureType value = NumericTraits<MeasureType>::ZeroValue();
this->m_CurrentMetricValue = NumericTraits<MeasureType>::ZeroValue();
// Time index zero brings the moving image closest to the fixed image
for( IndexValueType timePoint = 0; timePoint < numberOfTimePoints; timePoint++ )
{
RealType t = NumericTraits<RealType>::ZeroValue();
if( numberOfTimePoints > 1 )
{
t = static_cast<RealType>( timePoint ) / static_cast<RealType>( numberOfTimePoints - 1 );
}
// Get the fixed transform. We need to duplicate the resulting
// displacement field since it will be overwritten when we integrate
// the velocity field to get the moving image transform.
if( timePoint == 0 )
{
this->m_OutputTransform->GetModifiableDisplacementField()->FillBuffer( zeroVector );
}
else
{
this->m_OutputTransform->SetLowerTimeBound( t );
this->m_OutputTransform->SetUpperTimeBound( 0.0 );
this->m_OutputTransform->SetNumberOfIntegrationSteps( numberOfIntegrationSteps );
this->m_OutputTransform->IntegrateVelocityField();
}
typename DisplacementFieldDuplicatorType::Pointer fieldDuplicator = DisplacementFieldDuplicatorType::New();
fieldDuplicator->SetInputImage( this->m_OutputTransform->GetDisplacementField() );
fieldDuplicator->Update();
typename DisplacementFieldTransformType::Pointer fixedDisplacementFieldTransform = DisplacementFieldTransformType::New();
fixedDisplacementFieldTransform->SetDisplacementField( fieldDuplicator->GetModifiableOutput() );
// Get the moving transform
if( timePoint == numberOfTimePoints - 1 )
{
this->m_OutputTransform->GetModifiableDisplacementField()->FillBuffer( zeroVector );
}
else
{
this->m_OutputTransform->SetLowerTimeBound( t );
this->m_OutputTransform->SetUpperTimeBound( 1.0 );
this->m_OutputTransform->SetNumberOfIntegrationSteps( numberOfIntegrationSteps );
this->m_OutputTransform->IntegrateVelocityField();
}
typename DisplacementFieldTransformType::Pointer movingDisplacementFieldTransform = DisplacementFieldTransformType::New();
movingDisplacementFieldTransform->SetDisplacementField( this->m_OutputTransform->GetModifiableDisplacementField() );
this->m_CompositeTransform->AddTransform( movingDisplacementFieldTransform );
this->m_CompositeTransform->SetOnlyMostRecentTransformToOptimizeOn();
if( timePoint == 0 && this->m_CurrentIteration <= 1 )
{
fieldDuplicatorIdentity->SetInputImage( movingDisplacementFieldTransform->GetDisplacementField() );
fieldDuplicatorIdentity->Update();
fieldDuplicatorIdentity->GetModifiableOutput()->FillBuffer( zeroVector );
identityDisplacementFieldTransform->SetDisplacementField( fieldDuplicatorIdentity->GetModifiableOutput() );
}
for( unsigned int n = 0; n < this->m_MovingSmoothImages.size(); n++ )
{
typedef ResampleImageFilter<MovingImageType, VirtualImageType, RealType> MovingResamplerType;
typename MovingResamplerType::Pointer movingResampler = MovingResamplerType::New();
movingResampler->SetTransform( this->m_CompositeTransform );
movingResampler->SetInput( this->m_MovingSmoothImages[n] );
movingResampler->SetSize( virtualDomainImage->GetRequestedRegion().GetSize() );
movingResampler->SetOutputOrigin( virtualDomainImage->GetOrigin() );
movingResampler->SetOutputSpacing( virtualDomainImage->GetSpacing() );
movingResampler->SetOutputDirection( virtualDomainImage->GetDirection() );
movingResampler->SetDefaultPixelValue( 0 );
movingResampler->Update();
typedef ResampleImageFilter<FixedImageType, VirtualImageType, RealType> FixedResamplerType;
typename FixedResamplerType::Pointer fixedResampler = FixedResamplerType::New();
fixedResampler->SetTransform( fixedDisplacementFieldTransform );
fixedResampler->SetInput( this->m_FixedSmoothImages[n] );
fixedResampler->SetSize( virtualDomainImage->GetRequestedRegion().GetSize() );
fixedResampler->SetOutputOrigin( virtualDomainImage->GetOrigin() );
fixedResampler->SetOutputSpacing( virtualDomainImage->GetSpacing() );
fixedResampler->SetOutputDirection( virtualDomainImage->GetDirection() );
fixedResampler->SetDefaultPixelValue( 0 );
fixedResampler->Update();
if( multiMetric )
{
typename ImageMetricType::Pointer metricQueue = dynamic_cast<ImageMetricType *>( multiMetric->GetMetricQueue()[n].GetPointer() );
if( metricQueue.IsNotNull() )
{
metricQueue->SetFixedImage( fixedResampler->GetOutput() );
metricQueue->SetMovingImage( movingResampler->GetOutput() );
}
else
{
itkExceptionMacro("ERROR: Invalid conversion from the multi metric queue.");
}
}
else
{
dynamic_cast<ImageMetricType *>( this->m_Metric.GetPointer() )->SetFixedImage( fixedResampler->GetOutput() );
dynamic_cast<ImageMetricType *>( this->m_Metric.GetPointer() )->SetMovingImage( movingResampler->GetOutput() );
}
}
if( multiMetric )
{
multiMetric->SetFixedTransform( identityTransform );
multiMetric->SetMovingTransform( identityDisplacementFieldTransform );
}
else
{
dynamic_cast<ImageMetricType *>( this->m_Metric.GetPointer() )->SetFixedTransform( identityTransform );
dynamic_cast<ImageMetricType *>( this->m_Metric.GetPointer() )->SetMovingTransform( identityDisplacementFieldTransform );
}
this->m_Metric->Initialize();
metricDerivative.Fill( NumericTraits<typename MetricDerivativeType::ValueType>::ZeroValue() );
this->m_Metric->GetValueAndDerivative( value, metricDerivative );
// Ensure that the size of the optimizer weights is the same as the
// number of local transform parameters (=ImageDimension)
if( !this->m_OptimizerWeightsAreIdentity && this->m_OptimizerWeights.Size() == ImageDimension )
{
typename MetricDerivativeType::iterator it;
for( it = metricDerivative.begin(); it != metricDerivative.end(); it += ImageDimension )
{
for( unsigned int d = 0; d < ImageDimension; d++ )
{
*(it + d) *= this->m_OptimizerWeights[d];
}
}
}
// Note: we are intentionally ignoring the jacobian determinant.
// It does not change the direction of the optimization, only
// the scaling. It is very expensive to compute it accurately.
this->m_CurrentMetricValue += value;
// Remove the temporary mapping along the geodesic
this->m_CompositeTransform->RemoveTransform();
// we rescale the update velocity field at each time point.
// we first need to convert to a displacement field to look
// at the max norm of the field.
const bool importFilterWillReleaseMemory = false;
DisplacementVectorType *metricDerivativeFieldPointer = reinterpret_cast<DisplacementVectorType *>( metricDerivative.data_block() );
typedef ImportImageFilter<DisplacementVectorType, ImageDimension> ImporterType;
typename ImporterType::Pointer importer = ImporterType::New();
importer->SetImportPointer( metricDerivativeFieldPointer, numberOfPixelsPerTimePoint, importFilterWillReleaseMemory );
importer->SetRegion( virtualDomainImage->GetBufferedRegion() );
importer->SetOrigin( virtualDomainImage->GetOrigin() );
importer->SetSpacing( virtualDomainImage->GetSpacing() );
importer->SetDirection( virtualDomainImage->GetDirection() );
importer->Update();
typedef Image<RealType, ImageDimension> MagnitudeImageType;
typedef VectorMagnitudeImageFilter<DisplacementFieldType, MagnitudeImageType> MagnituderType;
typename MagnituderType::Pointer magnituder = MagnituderType::New();
magnituder->SetInput( importer->GetOutput() );
magnituder->Update();
typedef StatisticsImageFilter<MagnitudeImageType> StatisticsImageFilterType;
typename StatisticsImageFilterType::Pointer stats = StatisticsImageFilterType::New();
stats->SetInput( magnituder->GetOutput() );
stats->Update();
RealType maxNorm = stats->GetMaximum();
if( maxNorm <= 0.0 )
{
maxNorm = 1.0;
}
RealType scale = 1.0 / maxNorm;
metricDerivative *= scale;
updateDerivative.update( metricDerivative, timePoint * numberOfPixelsPerTimePoint * ImageDimension );
} // end loop over time points
// update the transform --- averaging with the last update reduces oscillations
updateDerivative = ( updateDerivative + lastUpdateDerivative ) * 0.5;
lastUpdateDerivative = updateDerivative;
this->m_OutputTransform->UpdateTransformParameters( updateDerivative, this->m_LearningRate );
this->m_CurrentMetricValue /= static_cast<MeasureType>( numberOfTimePoints );
convergenceMonitoring->AddEnergyValue( this->m_CurrentMetricValue );
this->m_CurrentConvergenceValue = convergenceMonitoring->GetConvergenceValue();
if( this->m_CurrentConvergenceValue < this->m_ConvergenceThreshold )
{
this->m_IsConverged = true;
}
if( this->m_IsConverged || this->m_CurrentIteration >= this->m_NumberOfIterationsPerLevel[this->m_CurrentLevel] )
{
// Once we finish by convergence or exceeding number of iterations,
// we need to reset the transform by resetting the time bounds to the
// full range [0,1] and integrating the velocity field to get the
// forward and inverse displacement fields.
this->m_OutputTransform->SetLowerTimeBound( 0 );
this->m_OutputTransform->SetUpperTimeBound( 1.0 );
this->m_OutputTransform->SetNumberOfIntegrationSteps( numberOfIntegrationSteps );
this->m_OutputTransform->IntegrateVelocityField();
if( this->GetDebug() )
{
RealType spatialNorm = NumericTraits<RealType>::ZeroValue();
RealType spatioTemporalNorm = NumericTraits<RealType>::ZeroValue();
typename TimeVaryingVelocityFieldType::SizeType radius;
radius.Fill( 1 );
typedef NeighborhoodAlgorithm::ImageBoundaryFacesCalculator<TimeVaryingVelocityFieldType> FaceCalculatorType;
FaceCalculatorType faceCalculator;
typename FaceCalculatorType::FaceListType faceList = faceCalculator( velocityField, velocityField->GetLargestPossibleRegion(), radius );
// We only iterate over the first element of the face list since
// that contains only the interior region.
ConstNeighborhoodIterator<TimeVaryingVelocityFieldType> ItV( radius, velocityField, faceList.front() );
for( ItV.GoToBegin(); !ItV.IsAtEnd(); ++ItV )
{
RealType localSpatialNorm = NumericTraits<RealType>::ZeroValue();
RealType localSpatioTemporalNorm = NumericTraits<RealType>::ZeroValue();
for( unsigned int d = 0; d < ImageDimension + 1; d++ )
{
DisplacementVectorType vector = ( ItV.GetNext( d ) - ItV.GetPrevious( d ) ) * 0.5 * velocityFieldSpacing[d];
RealType vectorNorm = vector.GetNorm();
localSpatioTemporalNorm += vectorNorm;
if( d < ImageDimension )
{
localSpatialNorm += vectorNorm;
}
}
spatialNorm += ( localSpatialNorm / static_cast<RealType>( ImageDimension + 1 ) );
spatioTemporalNorm += ( localSpatioTemporalNorm / static_cast<RealType>( ImageDimension + 1 ) );
}
spatialNorm /= static_cast<RealType>( ( velocityField->GetLargestPossibleRegion() ).GetNumberOfPixels() );
spatioTemporalNorm /= static_cast<RealType>( ( velocityField->GetLargestPossibleRegion() ).GetNumberOfPixels() );
itkDebugMacro( " spatio-temporal velocity field norm : " << spatioTemporalNorm << ", spatial velocity field norm: " << spatialNorm );
}
}
reporter.CompletedStep();
}
}
/*
* Start the registration
*/
template<typename TFixedImage, typename TMovingImage, typename TOutputTransform, typename TVirtualImage, typename TPointSet>
void
TimeVaryingVelocityFieldImageRegistrationMethodv4<TFixedImage, TMovingImage, TOutputTransform, TVirtualImage, TPointSet>
::GenerateData()
{
this->AllocateOutputs();
for( this->m_CurrentLevel = 0; this->m_CurrentLevel < this->m_NumberOfLevels; this->m_CurrentLevel++ )
{
this->InitializeRegistrationAtEachLevel( this->m_CurrentLevel );
// The base class adds the transform to be optimized at initialization.
// However, since this class handles its own optimization, we remove it
// to optimize separately. We then add it after the optimization loop.
this->m_CompositeTransform->RemoveTransform();
this->StartOptimization();
this->m_CompositeTransform->AddTransform( this->m_OutputTransform );
}
this->GetTransformOutput()->Set(this->m_OutputTransform);
}
/*
* PrintSelf
*/
template<typename TFixedImage, typename TMovingImage, typename TOutputTransform, typename TVirtualImage, typename TPointSet>
void
TimeVaryingVelocityFieldImageRegistrationMethodv4<TFixedImage, TMovingImage, TOutputTransform, TVirtualImage, TPointSet>
::PrintSelf( std::ostream & os, Indent indent ) const
{
Superclass::PrintSelf( os, indent );
os << indent << "Number of levels: " << this->m_NumberOfLevels << std::endl;
os << indent << "Smoothing sigmas: " << this->m_SmoothingSigmasPerLevel << std::endl;
os << indent << "Number of iterations: " << this->m_NumberOfIterationsPerLevel << std::endl;
os << indent << "Convergence threshold: " << this->m_ConvergenceThreshold << std::endl;
os << indent << "Convergence window size: " << this->m_ConvergenceWindowSize << std::endl;
os << indent << "Learning rate: " << this->m_LearningRate << std::endl;
}
} // end namespace itk
#endif
|