This file is indexed.

/usr/include/ITK-4.9/itkTimeVaryingVelocityFieldImageRegistrationMethodv4.hxx is in libinsighttoolkit4-dev 4.9.0-4ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkTimeVaryingVelocityFieldImageRegistrationMethodv4_hxx
#define itkTimeVaryingVelocityFieldImageRegistrationMethodv4_hxx

#include "itkTimeVaryingVelocityFieldImageRegistrationMethodv4.h"

#include "itkConstNeighborhoodIterator.h"
#include "itkDisplacementFieldTransform.h"
#include "itkImageDuplicator.h"
#include "itkImportImageFilter.h"
#include "itkNeighborhoodAlgorithm.h"
#include "itkResampleImageFilter.h"
#include "itkStatisticsImageFilter.h"
#include "itkVectorMagnitudeImageFilter.h"
#include "itkWindowConvergenceMonitoringFunction.h"

namespace itk
{

/**
 * Constructor
 */
template<typename TFixedImage, typename TMovingImage, typename TOutputTransform, typename TVirtualImage, typename TPointSet>
TimeVaryingVelocityFieldImageRegistrationMethodv4<TFixedImage, TMovingImage, TOutputTransform, TVirtualImage, TPointSet>
::TimeVaryingVelocityFieldImageRegistrationMethodv4() :
  m_LearningRate( 0.25 ),
  m_ConvergenceThreshold( 1.0e-7 ),
  m_ConvergenceWindowSize( 10 )
{
  this->m_NumberOfIterationsPerLevel.SetSize( 3 );
  this->m_NumberOfIterationsPerLevel[0] = 20;
  this->m_NumberOfIterationsPerLevel[1] = 30;
  this->m_NumberOfIterationsPerLevel[2] = 40;
}

template<typename TFixedImage, typename TMovingImage, typename TOutputTransform, typename TVirtualImage, typename TPointSet>
TimeVaryingVelocityFieldImageRegistrationMethodv4<TFixedImage, TMovingImage, TOutputTransform, TVirtualImage, TPointSet>
::~TimeVaryingVelocityFieldImageRegistrationMethodv4()
{
}

/*
 * Start the optimization at each level.  We just do a basic gradient descent operation.
 */
template<typename TFixedImage, typename TMovingImage, typename TOutputTransform, typename TVirtualImage, typename TPointSet>
void
TimeVaryingVelocityFieldImageRegistrationMethodv4<TFixedImage, TMovingImage, TOutputTransform, TVirtualImage, TPointSet>
::StartOptimization()
{
  typedef ImageDuplicator<DisplacementFieldType> DisplacementFieldDuplicatorType;
  typedef DisplacementFieldTransform<RealType, ImageDimension> DisplacementFieldTransformType;
  typename DisplacementFieldType::PixelType zeroVector;
  zeroVector.Fill( 0 );

  // This transform is used for the fixed image
  typedef itk::IdentityTransform<RealType, ImageDimension> IdentityTransformType;
  typename IdentityTransformType::Pointer identityTransform = IdentityTransformType::New();
  identityTransform->SetIdentity();

  typename DisplacementFieldTransformType::Pointer identityDisplacementFieldTransform = DisplacementFieldTransformType::New();

  // This transform gets used for the moving image
  typename DisplacementFieldDuplicatorType::Pointer fieldDuplicatorIdentity = DisplacementFieldDuplicatorType::New();

  TimeVaryingVelocityFieldPointer velocityField = this->m_OutputTransform->GetModifiableVelocityField();
  IndexValueType numberOfTimePoints = velocityField->GetLargestPossibleRegion().GetSize()[ImageDimension];

  SizeValueType numberOfIntegrationSteps = numberOfTimePoints + 2;

  const typename TimeVaryingVelocityFieldType::RegionType & largestRegion = velocityField->GetLargestPossibleRegion();
  const SizeValueType numberOfPixelsPerTimePoint = largestRegion.GetNumberOfPixels() / numberOfTimePoints;

  const typename TimeVaryingVelocityFieldType::SpacingType velocityFieldSpacing = velocityField->GetSpacing();

  typename VirtualImageType::ConstPointer virtualDomainImage;
  typename MultiMetricType::Pointer multiMetric = dynamic_cast<MultiMetricType *>( this->m_Metric.GetPointer() );
  if( multiMetric )
    {
    typename ImageMetricType::Pointer metricQueue = dynamic_cast<ImageMetricType *>( multiMetric->GetMetricQueue()[0].GetPointer() );
    if( metricQueue.IsNotNull() )
      {
      virtualDomainImage = metricQueue->GetVirtualImage();
      }
    else
      {
      itkExceptionMacro( "ERROR: Invalid conversion from the multi metric queue." );
      }
    }
  else
    {
    typename ImageMetricType::Pointer metric = dynamic_cast<ImageMetricType *>( this->m_Metric.GetPointer() );
    if( metric.IsNotNull() )
      {
      virtualDomainImage = metric->GetVirtualImage();
      }
    else
      {
      itkExceptionMacro( "ERROR: Invalid metric conversion." );
      }
    }

  typedef typename ImageMetricType::DerivativeType MetricDerivativeType;
  const typename MetricDerivativeType::SizeValueType metricDerivativeSize = virtualDomainImage->GetLargestPossibleRegion().GetNumberOfPixels() * ImageDimension;
  MetricDerivativeType metricDerivative( metricDerivativeSize );

  // Warp the moving image based on the composite transform (not including the current
  // time varying velocity field transform to be optimized).

  // Instantiate the update derivative for all vectors of the velocity field
  DerivativeType updateDerivative( numberOfPixelsPerTimePoint * numberOfTimePoints * ImageDimension  );
  DerivativeType lastUpdateDerivative( numberOfPixelsPerTimePoint * numberOfTimePoints * ImageDimension  );
  lastUpdateDerivative.Fill( 0 );
  updateDerivative.Fill( 0 );

  // Monitor the convergence
  typedef itk::Function::WindowConvergenceMonitoringFunction<RealType> ConvergenceMonitoringType;
  typename ConvergenceMonitoringType::Pointer convergenceMonitoring = ConvergenceMonitoringType::New();
  convergenceMonitoring->SetWindowSize( this->m_ConvergenceWindowSize );

  // m_OutputTransform is the velocity field

  IterationReporter reporter( this, 0, 1 );

  while( this->m_CurrentIteration++ < this->m_NumberOfIterationsPerLevel[this->m_CurrentLevel] && !this->m_IsConverged )
    {
    updateDerivative.Fill( 0 );
    MeasureType value = NumericTraits<MeasureType>::ZeroValue();
    this->m_CurrentMetricValue = NumericTraits<MeasureType>::ZeroValue();

    // Time index zero brings the moving image closest to the fixed image
    for( IndexValueType timePoint = 0; timePoint < numberOfTimePoints; timePoint++ )
      {
      RealType t = NumericTraits<RealType>::ZeroValue();
      if( numberOfTimePoints > 1 )
        {
        t = static_cast<RealType>( timePoint ) / static_cast<RealType>( numberOfTimePoints - 1 );
        }

      // Get the fixed transform.  We need to duplicate the resulting
      // displacement field since it will be overwritten when we integrate
      // the velocity field to get the moving image transform.
      if( timePoint == 0 )
        {
        this->m_OutputTransform->GetModifiableDisplacementField()->FillBuffer( zeroVector );
        }
      else
        {
        this->m_OutputTransform->SetLowerTimeBound( t );
        this->m_OutputTransform->SetUpperTimeBound( 0.0 );
        this->m_OutputTransform->SetNumberOfIntegrationSteps( numberOfIntegrationSteps );
        this->m_OutputTransform->IntegrateVelocityField();
        }

      typename DisplacementFieldDuplicatorType::Pointer fieldDuplicator = DisplacementFieldDuplicatorType::New();
      fieldDuplicator->SetInputImage( this->m_OutputTransform->GetDisplacementField() );
      fieldDuplicator->Update();

      typename DisplacementFieldTransformType::Pointer fixedDisplacementFieldTransform = DisplacementFieldTransformType::New();
      fixedDisplacementFieldTransform->SetDisplacementField( fieldDuplicator->GetModifiableOutput() );

      // Get the moving transform
      if( timePoint == numberOfTimePoints - 1 )
        {
        this->m_OutputTransform->GetModifiableDisplacementField()->FillBuffer( zeroVector );
        }
      else
        {
        this->m_OutputTransform->SetLowerTimeBound( t );
        this->m_OutputTransform->SetUpperTimeBound( 1.0 );
        this->m_OutputTransform->SetNumberOfIntegrationSteps( numberOfIntegrationSteps );
        this->m_OutputTransform->IntegrateVelocityField();
        }

      typename DisplacementFieldTransformType::Pointer movingDisplacementFieldTransform = DisplacementFieldTransformType::New();
      movingDisplacementFieldTransform->SetDisplacementField( this->m_OutputTransform->GetModifiableDisplacementField() );

      this->m_CompositeTransform->AddTransform( movingDisplacementFieldTransform );
      this->m_CompositeTransform->SetOnlyMostRecentTransformToOptimizeOn();
      if( timePoint == 0 && this->m_CurrentIteration <= 1 )
        {
        fieldDuplicatorIdentity->SetInputImage( movingDisplacementFieldTransform->GetDisplacementField() );
        fieldDuplicatorIdentity->Update();
        fieldDuplicatorIdentity->GetModifiableOutput()->FillBuffer( zeroVector );
        identityDisplacementFieldTransform->SetDisplacementField( fieldDuplicatorIdentity->GetModifiableOutput() );
        }

      for( unsigned int n = 0; n < this->m_MovingSmoothImages.size(); n++ )
        {
        typedef ResampleImageFilter<MovingImageType, VirtualImageType, RealType> MovingResamplerType;
        typename MovingResamplerType::Pointer movingResampler = MovingResamplerType::New();
        movingResampler->SetTransform( this->m_CompositeTransform );
        movingResampler->SetInput( this->m_MovingSmoothImages[n] );
        movingResampler->SetSize( virtualDomainImage->GetRequestedRegion().GetSize() );
        movingResampler->SetOutputOrigin( virtualDomainImage->GetOrigin() );
        movingResampler->SetOutputSpacing( virtualDomainImage->GetSpacing() );
        movingResampler->SetOutputDirection( virtualDomainImage->GetDirection() );
        movingResampler->SetDefaultPixelValue( 0 );
        movingResampler->Update();

        typedef ResampleImageFilter<FixedImageType, VirtualImageType, RealType> FixedResamplerType;
        typename FixedResamplerType::Pointer fixedResampler = FixedResamplerType::New();
        fixedResampler->SetTransform( fixedDisplacementFieldTransform );
        fixedResampler->SetInput( this->m_FixedSmoothImages[n] );
        fixedResampler->SetSize( virtualDomainImage->GetRequestedRegion().GetSize() );
        fixedResampler->SetOutputOrigin( virtualDomainImage->GetOrigin() );
        fixedResampler->SetOutputSpacing( virtualDomainImage->GetSpacing() );
        fixedResampler->SetOutputDirection( virtualDomainImage->GetDirection() );
        fixedResampler->SetDefaultPixelValue( 0 );
        fixedResampler->Update();

        if( multiMetric )
          {
          typename ImageMetricType::Pointer metricQueue = dynamic_cast<ImageMetricType *>( multiMetric->GetMetricQueue()[n].GetPointer() );
          if( metricQueue.IsNotNull() )
            {
            metricQueue->SetFixedImage( fixedResampler->GetOutput() );
            metricQueue->SetMovingImage( movingResampler->GetOutput() );
            }
          else
            {
            itkExceptionMacro("ERROR: Invalid conversion from the multi metric queue.");
            }
          }
        else
          {
          dynamic_cast<ImageMetricType *>( this->m_Metric.GetPointer() )->SetFixedImage( fixedResampler->GetOutput() );
          dynamic_cast<ImageMetricType *>( this->m_Metric.GetPointer() )->SetMovingImage( movingResampler->GetOutput() );
          }
        }

      if( multiMetric )
        {
        multiMetric->SetFixedTransform( identityTransform );
        multiMetric->SetMovingTransform( identityDisplacementFieldTransform );
        }
      else
        {
        dynamic_cast<ImageMetricType *>( this->m_Metric.GetPointer() )->SetFixedTransform( identityTransform );
        dynamic_cast<ImageMetricType *>( this->m_Metric.GetPointer() )->SetMovingTransform( identityDisplacementFieldTransform );
        }
      this->m_Metric->Initialize();

      metricDerivative.Fill( NumericTraits<typename MetricDerivativeType::ValueType>::ZeroValue() );
      this->m_Metric->GetValueAndDerivative( value, metricDerivative );

      // Ensure that the size of the optimizer weights is the same as the
      // number of local transform parameters (=ImageDimension)
      if( !this->m_OptimizerWeightsAreIdentity && this->m_OptimizerWeights.Size() == ImageDimension )
        {
        typename MetricDerivativeType::iterator it;
        for( it = metricDerivative.begin(); it != metricDerivative.end(); it += ImageDimension )
          {
          for( unsigned int d = 0; d < ImageDimension; d++ )
            {
            *(it + d) *= this->m_OptimizerWeights[d];
            }
          }
        }

      // Note: we are intentionally ignoring the jacobian determinant.
      // It does not change the direction of the optimization, only
      // the scaling.  It is very expensive to compute it accurately.

      this->m_CurrentMetricValue += value;

      // Remove the temporary mapping along the geodesic
      this->m_CompositeTransform->RemoveTransform();

      // we rescale the update velocity field at each time point.
      // we first need to convert to a displacement field to look
      // at the max norm of the field.

      const bool importFilterWillReleaseMemory = false;
      DisplacementVectorType *metricDerivativeFieldPointer = reinterpret_cast<DisplacementVectorType *>( metricDerivative.data_block() );

      typedef ImportImageFilter<DisplacementVectorType, ImageDimension> ImporterType;
      typename ImporterType::Pointer importer = ImporterType::New();
      importer->SetImportPointer( metricDerivativeFieldPointer, numberOfPixelsPerTimePoint, importFilterWillReleaseMemory );
      importer->SetRegion( virtualDomainImage->GetBufferedRegion() );
      importer->SetOrigin( virtualDomainImage->GetOrigin() );
      importer->SetSpacing( virtualDomainImage->GetSpacing() );
      importer->SetDirection( virtualDomainImage->GetDirection() );
      importer->Update();

      typedef Image<RealType, ImageDimension> MagnitudeImageType;

      typedef VectorMagnitudeImageFilter<DisplacementFieldType, MagnitudeImageType> MagnituderType;
      typename MagnituderType::Pointer magnituder = MagnituderType::New();
      magnituder->SetInput( importer->GetOutput() );
      magnituder->Update();

      typedef StatisticsImageFilter<MagnitudeImageType> StatisticsImageFilterType;
      typename StatisticsImageFilterType::Pointer stats = StatisticsImageFilterType::New();
      stats->SetInput( magnituder->GetOutput() );
      stats->Update();

      RealType maxNorm = stats->GetMaximum();
      if( maxNorm <= 0.0 )
        {
        maxNorm = 1.0;
        }

      RealType scale = 1.0 / maxNorm;
      metricDerivative *= scale;
      updateDerivative.update( metricDerivative, timePoint * numberOfPixelsPerTimePoint * ImageDimension );
      } // end loop over time points

    // update the transform --- averaging with the last update reduces oscillations
    updateDerivative = ( updateDerivative + lastUpdateDerivative ) * 0.5;
    lastUpdateDerivative = updateDerivative;
    this->m_OutputTransform->UpdateTransformParameters( updateDerivative, this->m_LearningRate );

    this->m_CurrentMetricValue /= static_cast<MeasureType>( numberOfTimePoints );

    convergenceMonitoring->AddEnergyValue( this->m_CurrentMetricValue );
    this->m_CurrentConvergenceValue = convergenceMonitoring->GetConvergenceValue();

    if( this->m_CurrentConvergenceValue < this->m_ConvergenceThreshold )
      {
      this->m_IsConverged = true;
      }

    if( this->m_IsConverged || this->m_CurrentIteration >= this->m_NumberOfIterationsPerLevel[this->m_CurrentLevel] )
      {

      // Once we finish by convergence or exceeding number of iterations,
      // we need to reset the transform by resetting the time bounds to the
      // full range [0,1] and integrating the velocity field to get the
      // forward and inverse displacement fields.

      this->m_OutputTransform->SetLowerTimeBound( 0 );
      this->m_OutputTransform->SetUpperTimeBound( 1.0 );
      this->m_OutputTransform->SetNumberOfIntegrationSteps( numberOfIntegrationSteps );
      this->m_OutputTransform->IntegrateVelocityField();

      if( this->GetDebug() )
        {
        RealType spatialNorm = NumericTraits<RealType>::ZeroValue();
        RealType spatioTemporalNorm = NumericTraits<RealType>::ZeroValue();

        typename TimeVaryingVelocityFieldType::SizeType radius;
        radius.Fill( 1 );

        typedef NeighborhoodAlgorithm::ImageBoundaryFacesCalculator<TimeVaryingVelocityFieldType> FaceCalculatorType;
        FaceCalculatorType faceCalculator;
        typename FaceCalculatorType::FaceListType faceList = faceCalculator( velocityField, velocityField->GetLargestPossibleRegion(), radius );

        // We only iterate over the first element of the face list since
        // that contains only the interior region.

        ConstNeighborhoodIterator<TimeVaryingVelocityFieldType> ItV( radius, velocityField, faceList.front() );
        for( ItV.GoToBegin(); !ItV.IsAtEnd(); ++ItV )
          {
          RealType localSpatialNorm = NumericTraits<RealType>::ZeroValue();
          RealType localSpatioTemporalNorm = NumericTraits<RealType>::ZeroValue();
          for( unsigned int d = 0; d < ImageDimension + 1; d++ )
            {
            DisplacementVectorType vector =  ( ItV.GetNext( d ) - ItV.GetPrevious( d ) ) * 0.5 * velocityFieldSpacing[d];
            RealType vectorNorm = vector.GetNorm();
            localSpatioTemporalNorm += vectorNorm;
            if( d < ImageDimension )
              {
              localSpatialNorm += vectorNorm;
              }
            }
          spatialNorm += ( localSpatialNorm / static_cast<RealType>( ImageDimension + 1 ) );
          spatioTemporalNorm += ( localSpatioTemporalNorm / static_cast<RealType>( ImageDimension + 1 ) );
          }
        spatialNorm /= static_cast<RealType>( ( velocityField->GetLargestPossibleRegion() ).GetNumberOfPixels() );
        spatioTemporalNorm /= static_cast<RealType>( ( velocityField->GetLargestPossibleRegion() ).GetNumberOfPixels() );
        itkDebugMacro( "    spatio-temporal velocity field norm : " << spatioTemporalNorm << ", spatial velocity field norm: " << spatialNorm );
        }
      }
    reporter.CompletedStep();
    }
}

/*
 * Start the registration
 */
template<typename TFixedImage, typename TMovingImage, typename TOutputTransform, typename TVirtualImage, typename TPointSet>
void
TimeVaryingVelocityFieldImageRegistrationMethodv4<TFixedImage, TMovingImage, TOutputTransform, TVirtualImage, TPointSet>
::GenerateData()
{

  this->AllocateOutputs();

  for( this->m_CurrentLevel = 0; this->m_CurrentLevel < this->m_NumberOfLevels; this->m_CurrentLevel++ )
    {
    this->InitializeRegistrationAtEachLevel( this->m_CurrentLevel );

    // The base class adds the transform to be optimized at initialization.
    // However, since this class handles its own optimization, we remove it
    // to optimize separately.  We then add it after the optimization loop.

    this->m_CompositeTransform->RemoveTransform();

    this->StartOptimization();

    this->m_CompositeTransform->AddTransform( this->m_OutputTransform );
    }

  this->GetTransformOutput()->Set(this->m_OutputTransform);
}

/*
 * PrintSelf
 */
template<typename TFixedImage, typename TMovingImage, typename TOutputTransform, typename TVirtualImage, typename TPointSet>
void
TimeVaryingVelocityFieldImageRegistrationMethodv4<TFixedImage, TMovingImage, TOutputTransform, TVirtualImage, TPointSet>
::PrintSelf( std::ostream & os, Indent indent ) const
{
  Superclass::PrintSelf( os, indent );

  os << indent << "Number of levels: " << this->m_NumberOfLevels << std::endl;
  os << indent << "Smoothing sigmas: " << this->m_SmoothingSigmasPerLevel << std::endl;
  os << indent << "Number of iterations: " << this->m_NumberOfIterationsPerLevel << std::endl;
  os << indent << "Convergence threshold: " << this->m_ConvergenceThreshold << std::endl;
  os << indent << "Convergence window size: " << this->m_ConvergenceWindowSize << std::endl;
  os << indent << "Learning rate: " << this->m_LearningRate << std::endl;
}

} // end namespace itk

#endif