/usr/include/ITK-4.9/itkTrainingFunctionBase.hxx is in libinsighttoolkit4-dev 4.9.0-4ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 | /*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkTrainingFunctionBase_hxx
#define itkTrainingFunctionBase_hxx
#include "itkTrainingFunctionBase.h"
namespace itk
{
namespace Statistics
{
template<typename TSample, typename TTargetVector, typename ScalarType>
TrainingFunctionBase<TSample,TTargetVector,ScalarType>
::TrainingFunctionBase()
{
m_PerformanceFunction = DefaultPerformanceType::New();
m_Iterations = 0;
m_TrainingSamples = ITK_NULLPTR;
m_SampleTargets = ITK_NULLPTR;
m_LearningRate = 1.0;
}
template<typename TSample, typename TTargetVector, typename ScalarType>
void TrainingFunctionBase<TSample,TTargetVector,ScalarType>
::SetTrainingSamples(TSample* samples)
{
m_TrainingSamples = samples;
std::cout << "Training functionSample Size=" << samples->Size() << std::endl;
typename TSample::ConstIterator iter = samples->Begin();
while (iter != samples->End())
{
//m_InputSamples.push_back(defaultconverter(iter.GetMeasurementVector()));
m_InputSamples.push_back(iter.GetMeasurementVector());
++iter;
}
}
template<typename TSample, typename TTargetVector, typename ScalarType>
void TrainingFunctionBase<TSample,TTargetVector,ScalarType>
::SetTargetValues(TTargetVector* targets)
{
typename TTargetVector::ConstIterator iter = targets->Begin();
while (iter != targets->End())
{
//m_Targets.push_back(targetconverter(iter.GetMeasurementVector()));
m_Targets.push_back(iter.GetMeasurementVector());
++iter;
}
std::cout << "Num of Sample Targets converted= " << m_Targets.size()
<< std::endl;
this->Modified();
}
template<typename TSample, typename TTargetVector, typename ScalarType>
void
TrainingFunctionBase<TSample,TTargetVector,ScalarType>
::SetLearningRate(ValueType lr)
{
m_LearningRate = lr;
this->Modified();
}
template<typename TSample, typename TTargetVector, typename ScalarType>
typename TrainingFunctionBase<TSample,TTargetVector,ScalarType>::ValueType
TrainingFunctionBase<TSample,TTargetVector,ScalarType>
::GetLearningRate()
{
return m_LearningRate;
}
template<typename TSample, typename TTargetVector, typename ScalarType>
void TrainingFunctionBase<TSample,TTargetVector,ScalarType>
::SetPerformanceFunction(PerformanceFunctionType* f)
{
m_PerformanceFunction=f;
this->Modified();
}
/** Print the object */
template<typename TSample, typename TTargetVector, typename ScalarType>
void
TrainingFunctionBase<TSample,TTargetVector,ScalarType>
::PrintSelf( std::ostream& os, Indent indent ) const
{
os << indent << "TrainingFunctionBase(" << this << ")" << std::endl;
os << indent << "m_PerformanceFunction = " << m_PerformanceFunction << std::endl;
os << indent << "m_Iterations = " << m_Iterations << std::endl;
if(m_TrainingSamples)
{
os << indent << "m_TrainingSamples = " << m_TrainingSamples << std::endl;
}
if(m_SampleTargets)
{
os << indent << "m_SampleTargets = " << m_SampleTargets << std::endl;
}
//os << indent << "m_InputSamples = " << m_InputSamples << std::endl;
//os << indent << "m_Targets = " << m_Targets << std::endl;
os << indent << "m_LearningRate = " << m_LearningRate << std::endl;
Superclass::PrintSelf( os, indent );
}
} // end namespace Statistics
} // end namespace itk
#endif
|