This file is indexed.

/usr/include/ITK-4.9/itkTriangleHelper.hxx is in libinsighttoolkit4-dev 4.9.0-4ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkTriangleHelper_hxx
#define itkTriangleHelper_hxx

#include "itkTriangleHelper.h"
#include "itkMath.h"

namespace itk
{
template< typename TPoint >
bool TriangleHelper< TPoint >::IsObtuse(const PointType & iA, const PointType & iB, const PointType & iC)
{
  VectorType v01 = iB - iA;
  VectorType v02 = iC - iA;
  VectorType v12 = iC - iB;

  if ( v01 * v02 < 0.0 )
    {
    return true;
    }
  else
    {
    if ( v02 * v12 < 0.0 )
      {
      return true;
      }
    else
      {
      if ( v01 * -v12 < 0.0 )
        {
        return true;
        }
      else
        {
        return false;
        }
      }
    }
}

template< typename TPoint >
typename TriangleHelper< TPoint >::VectorType
TriangleHelper< TPoint >::ComputeNormal(const PointType & iA,
                                        const PointType & iB,
                                        const PointType & iC)
{
  CrossVectorType cross;
  VectorType      w = cross (iB - iA, iC - iA);
  CoordRepType    l2 = w.GetSquaredNorm();

  if ( l2 != 0.0 )
    {
    w /= std::sqrt(l2);
    }

  return w;
}

template< typename TPoint >
typename TriangleHelper< TPoint >::CoordRepType
TriangleHelper< TPoint >::Cotangent(const PointType & iA,
                                    const PointType & iB,
                                    const PointType & iC)
{
  VectorType   v21 = iA - iB;

  CoordRepType v21_l2 = v21.GetSquaredNorm();

  if ( Math::NotAlmostEquals( v21_l2, NumericTraits< CoordRepType >::ZeroValue() ) )
    {
    v21 /= std::sqrt(v21_l2);
    }

  VectorType   v23 = iC - iB;
  CoordRepType v23_l2 = v23.GetSquaredNorm();
  if ( Math::NotAlmostEquals( v23_l2, NumericTraits< CoordRepType >::ZeroValue() ) )
    {
    v23 /= std::sqrt(v23_l2);
    }

  CoordRepType bound(0.999999);

  CoordRepType cos_theta = vnl_math_max( -bound,
                                         vnl_math_min(bound, v21 * v23) );

  return 1.0 / std::tan( std::acos(cos_theta) );
}

template< typename TPoint >
typename TriangleHelper< TPoint >::PointType
TriangleHelper< TPoint >::ComputeBarycenter(
  const CoordRepType & iA1, const PointType & iP1,
  const CoordRepType & iA2, const PointType & iP2,
  const CoordRepType & iA3, const PointType & iP3)
{
  PointType oPt;

  CoordRepType total = iA1 + iA2 + iA3;

  if ( Math::AlmostEquals( total, NumericTraits< CoordRepType >::ZeroValue() ) )
    {
    //in such case there is no barycenter;
    oPt.Fill(0.);
    return oPt;
    }

  CoordRepType inv_total = 1. / total;
  CoordRepType a1 = iA1 * inv_total;
  CoordRepType a2 = iA2 * inv_total;
  CoordRepType a3 = iA3 * inv_total;

  for ( unsigned int dim = 0; dim < PointDimension; ++dim )
    {
    oPt[dim] = a1 * iP1[dim] + a2 * iP2[dim] + a3 * iP3[dim];
    }

  return oPt;
}

template< typename TPoint >
typename TriangleHelper< TPoint >::CoordRepType
TriangleHelper< TPoint >::ComputeAngle(const PointType & iP1,
                                       const PointType & iP2,
                                       const PointType & iP3)
{
  VectorType v21 = iP1 - iP2;
  VectorType v23 = iP3 - iP2;

  CoordRepType v21_l2 = v21.GetSquaredNorm();
  CoordRepType v23_l2 = v23.GetSquaredNorm();

  if ( v21_l2 != 0.0 )
    {
    v21 /= std::sqrt(v21_l2);
    }
  if ( v23_l2 != 0.0 )
    {
    v23 /= std::sqrt(v23_l2);
    }

  CoordRepType bound(0.999999);

  CoordRepType cos_theta = vnl_math_max( -bound,
                                         vnl_math_min(bound, v21 * v23) );

  return std::acos(cos_theta);
}

template< typename TPoint >
typename TriangleHelper< TPoint >::PointType
TriangleHelper< TPoint >::ComputeGravityCenter(
  const PointType & iP1,
  const PointType & iP2,
  const PointType & iP3)
{
  return ComputeBarycenter(1., iP1, 1., iP2, 1., iP3);
}

template< typename TPoint >
typename TriangleHelper< TPoint >::PointType
TriangleHelper< TPoint >::ComputeCircumCenter(
  const PointType & iP1,
  const PointType & iP2,
  const PointType & iP3)
{
  PointType oPt;

  oPt.Fill (0.0);

  CoordRepType a = iP2.SquaredEuclideanDistanceTo (iP3);
  CoordRepType b = iP1.SquaredEuclideanDistanceTo (iP3);
  CoordRepType c = iP2.SquaredEuclideanDistanceTo (iP1);

  CoordRepType Weight[3];
  Weight[0] = a * ( b + c - a );
  Weight[1] = b * ( c + a - b );
  Weight[2] = c * ( a + b - c );

  return ComputeBarycenter(Weight[0], iP1, Weight[1], iP2, Weight[2], iP3);
}

template< typename TPoint >
typename TriangleHelper< TPoint >::PointType
TriangleHelper< TPoint >::ComputeConstrainedCircumCenter(const PointType & iP1,
                                                         const PointType & iP2, const PointType & iP3)
{
  PointType    oPt;
  CoordRepType a = iP2.SquaredEuclideanDistanceTo (iP3);
  CoordRepType b = iP1.SquaredEuclideanDistanceTo (iP3);
  CoordRepType c = iP2.SquaredEuclideanDistanceTo (iP1);

  CoordRepType Weight[3];

  Weight[0] = a * ( b + c - a );
  Weight[1] = b * ( c + a - b );
  Weight[2] = c * ( a + b - c );

  for ( unsigned int i = 0; i < 3; i++ )
    {
    if ( Weight[i] < 0.0 )
      {
      Weight[i] = 0.;
      }
    }

  return ComputeBarycenter(Weight[0], iP1, Weight[1], iP2, Weight[2], iP3);
}

template< typename TPoint >
typename TriangleHelper< TPoint >::CoordRepType
TriangleHelper< TPoint >::ComputeArea(const PointType & iP1,
                                      const PointType & iP2,
                                      const PointType & iP3)
{
  CoordRepType a = iP2.EuclideanDistanceTo (iP3);
  CoordRepType b = iP1.EuclideanDistanceTo (iP3);
  CoordRepType c = iP2.EuclideanDistanceTo (iP1);

  CoordRepType s = 0.5 * ( a + b + c );

  return static_cast< CoordRepType >( std::sqrt ( s * ( s - a ) * ( s - b ) * ( s - c ) ) );
}

template< typename TPoint >
typename TriangleHelper< TPoint >::CoordRepType
TriangleHelper< TPoint >::ComputeMixedArea(const PointType & iP1,
                                      const PointType & iP2,
                                      const PointType & iP3)
{
  typedef TriangleHelper< TPoint > TriangleType;

  if ( !TriangleType::IsObtuse(iP1, iP2, iP3) )
    {
    CoordRepType sq_d01 =
        static_cast< CoordRepType >( iP1.SquaredEuclideanDistanceTo(iP2) );
    CoordRepType sq_d02 =
      static_cast< CoordRepType >( iP1.SquaredEuclideanDistanceTo(iP3) );

    CoordRepType cot_theta_210 = TriangleType::Cotangent(iP3, iP2, iP1);
    CoordRepType cot_theta_021 = TriangleType::Cotangent(iP1, iP3, iP2);

    return 0.125 * ( sq_d02 * cot_theta_210 + sq_d01 * cot_theta_021 );
    }
  else
    {
    CoordRepType area =
      static_cast< CoordRepType >( TriangleType::ComputeArea(iP1, iP2, iP3) );

    if ( ( iP2 - iP1 ) * ( iP3 - iP1 ) < NumericTraits< CoordRepType >::ZeroValue() )
      {
      return 0.5 * area;
      }
    else
      {
      return 0.25 * area;
      }
    }
}
}

#endif