This file is indexed.

/usr/include/ITK-4.9/itkVectorGradientNDAnisotropicDiffusionFunction.hxx is in libinsighttoolkit4-dev 4.9.0-4ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkVectorGradientNDAnisotropicDiffusionFunction_hxx
#define itkVectorGradientNDAnisotropicDiffusionFunction_hxx

#include "itkVectorGradientNDAnisotropicDiffusionFunction.h"

namespace itk
{
template< typename TImage >
double VectorGradientNDAnisotropicDiffusionFunction< TImage >
::m_MIN_NORM = 1.0e-10;

template< typename TImage >
VectorGradientNDAnisotropicDiffusionFunction< TImage >
::VectorGradientNDAnisotropicDiffusionFunction():
  m_K( 0.0 )
{
  unsigned int i, j;
  RadiusType   r;

  for ( i = 0; i < ImageDimension; ++i )
    {
    r[i] = 1;
    }
  this->SetRadius(r);

  // Dummy neighborhood used to set up the slices.
  Neighborhood< PixelType, ImageDimension > it;
  it.SetRadius(r);

  // Slice the neighborhood
  m_Center =  it.Size() / 2;

  for ( i = 0; i < ImageDimension; ++i )
    {
    m_Stride[i] = it.GetStride(i);
    }

  for ( i = 0; i < ImageDimension; ++i )
    {
    x_slice[i]  = std::slice(m_Center - m_Stride[i], 3, m_Stride[i]);
    }

  for ( i = 0; i < ImageDimension; ++i )
    {
    for ( j = 0; j < ImageDimension; ++j )
      {
      // For taking derivatives in the i direction that are offset one
      // pixel in the j direction.
      xa_slice[i][j] =
        std::slice( ( m_Center + m_Stride[j] ) - m_Stride[i], 3, m_Stride[i] );
      xd_slice[i][j] =
        std::slice( ( m_Center - m_Stride[j] ) - m_Stride[i], 3, m_Stride[i] );
      }
    }

  // Allocate the derivative operator.
  dx_op.SetDirection(0); // Not relelevant, we'll apply in a slice-based
                         // fashion
  dx_op.SetOrder(1);
  dx_op.CreateDirectional();
}

template< typename TImage >
typename VectorGradientNDAnisotropicDiffusionFunction< TImage >::PixelType
VectorGradientNDAnisotropicDiffusionFunction< TImage >
::ComputeUpdate(const NeighborhoodType & it, void *,
                const FloatOffsetType &)
{
  unsigned int i, j, k;
  PixelType    delta;

  double GradMag;
  double GradMag_d;
  double Cx[ImageDimension];
  double Cxd[ImageDimension];

  // Remember: PixelType is a Vector of length VectorDimension.
  PixelType dx_forward[ImageDimension];
  PixelType dx_backward[ImageDimension];
  PixelType dx[ImageDimension];
  PixelType dx_aug;
  PixelType dx_dim;

  // Calculate the directional and centralized derivatives.
  for ( i = 0; i < ImageDimension; i++ )
    {
    // ``Half'' derivatives
    dx_forward[i] = it.GetPixel(m_Center + m_Stride[i])
                    - it.GetPixel(m_Center);
    dx_forward[i] = dx_forward[i]  * this->m_ScaleCoefficients[i];
    dx_backward[i] =  it.GetPixel(m_Center)
                     - it.GetPixel(m_Center - m_Stride[i]);
    dx_backward[i] = dx_backward[i] * this->m_ScaleCoefficients[i];

    // Centralized differences
    dx[i]      = m_InnerProduct(x_slice[i], it, dx_op);
    dx[i] = dx[i] * this->m_ScaleCoefficients[i];
    }

  // Calculate the conductance term for each dimension.
  for ( i = 0; i < ImageDimension; i++ )
    {
    // Calculate gradient magnitude approximation in this
    // dimension linked (summed) across the vector components.
    GradMag   = 0.0;
    GradMag_d = 0.0;
    for ( k = 0; k < VectorDimension; k++ )
      {
      GradMag += vnl_math_sqr(dx_forward[i][k]);
      GradMag_d += vnl_math_sqr(dx_backward[i][k]);

      for ( j = 0; j < ImageDimension; j++ )
        {
        if ( j != i )
          {
          dx_aug  = m_InnerProduct(xa_slice[j][i], it, dx_op);
          dx_aug = dx_aug * this->m_ScaleCoefficients[j];
          dx_dim  = m_InnerProduct(xd_slice[j][i], it, dx_op);
          dx_dim = dx_dim * this->m_ScaleCoefficients[j];
          GradMag += 0.25f * vnl_math_sqr(dx[j][k] + dx_aug[k]);
          GradMag_d += 0.25f * vnl_math_sqr(dx[j][k] + dx_dim[k]);
          }
        }
      }

    if ( m_K == 0.0 )
      {
      Cx[i] = 0.0;
      Cxd[i] = 0.0;
      }
    else
      {
      Cx[i]  = std::exp(GradMag   / m_K);
      Cxd[i] = std::exp(GradMag_d / m_K);
      }
    }

  // Compute update value
  for ( k = 0; k < VectorDimension; k++ )
    {
    delta[k] = NumericTraits< ScalarValueType >::ZeroValue();

    for ( i = 0; i < ImageDimension; ++i )
      {
      dx_forward[i][k] *= Cx[i];
      dx_backward[i][k] *= Cxd[i];
      delta[k] += dx_forward[i][k] - dx_backward[i][k];
      }
    }

  return delta;
}
} // end namespace itk

#endif