/usr/include/ITK-4.9/itkVectorLinearInterpolateNearestNeighborExtrapolateImageFunction.hxx is in libinsighttoolkit4-dev 4.9.0-4ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 | /*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkVectorLinearInterpolateNearestNeighborExtrapolateImageFunction_hxx
#define itkVectorLinearInterpolateNearestNeighborExtrapolateImageFunction_hxx
#include "itkVectorLinearInterpolateNearestNeighborExtrapolateImageFunction.h"
#include "vnl/vnl_math.h"
namespace itk
{
/**
* Define the number of neighbors
*/
template< typename TInputImage, typename TCoordRep >
const unsigned int
VectorLinearInterpolateNearestNeighborExtrapolateImageFunction< TInputImage, TCoordRep >
::m_Neighbors = 1 << TInputImage::ImageDimension;
/**
* Constructor
*/
template< typename TInputImage, typename TCoordRep >
VectorLinearInterpolateNearestNeighborExtrapolateImageFunction< TInputImage, TCoordRep >
::VectorLinearInterpolateNearestNeighborExtrapolateImageFunction()
{}
/**
* PrintSelf
*/
template< typename TInputImage, typename TCoordRep >
void
VectorLinearInterpolateNearestNeighborExtrapolateImageFunction< TInputImage, TCoordRep >
::PrintSelf(std::ostream & os, Indent indent) const
{
this->Superclass::PrintSelf(os, indent);
}
/**
* Evaluate at image index position
*/
template< typename TInputImage, typename TCoordRep >
typename VectorLinearInterpolateNearestNeighborExtrapolateImageFunction< TInputImage, TCoordRep >
::OutputType
VectorLinearInterpolateNearestNeighborExtrapolateImageFunction< TInputImage, TCoordRep >
::EvaluateAtContinuousIndex(const ContinuousIndexType & index) const
{
unsigned int dim; // index over dimension
/**
* Compute base index = closest index below point
* Compute distance from point to base index
*/
IndexType baseIndex;
IndexType neighIndex;
double distance[ImageDimension];
for ( dim = 0; dim < ImageDimension; dim++ )
{
baseIndex[dim] = Math::Floor< IndexValueType >(index[dim]);
if ( baseIndex[dim] >= this->m_StartIndex[dim] )
{
if ( baseIndex[dim] < this->m_EndIndex[dim] )
{
distance[dim] = index[dim] - static_cast< double >( baseIndex[dim] );
}
else
{
baseIndex[dim] = this->m_EndIndex[dim];
distance[dim] = 0.0;
}
}
else
{
baseIndex[dim] = this->m_StartIndex[dim];
distance[dim] = 0.0;
}
}
/**
* Interpolated value is the weight some of each of the surrounding
* neighbors. The weight for each neighbour is the fraction overlap
* of the neighbor pixel with respect to a pixel centered on point.
*/
OutputType output;
NumericTraits<OutputType>::SetLength( output, this->GetInputImage()->GetNumberOfComponentsPerPixel() );
output.Fill(0.0);
RealType totalOverlap = 0.0;
for ( unsigned int counter = 0; counter < m_Neighbors; counter++ )
{
double overlap = 1.0; // fraction overlap
unsigned int upper = counter; // each bit indicates upper/lower neighbour
// get neighbor index and overlap fraction
for ( dim = 0; dim < ImageDimension; dim++ )
{
if ( upper & 1 )
{
neighIndex[dim] = baseIndex[dim] + 1;
overlap *= distance[dim];
}
else
{
neighIndex[dim] = baseIndex[dim];
overlap *= 1.0 - distance[dim];
}
upper >>= 1;
}
// get neighbor value only if overlap is not zero
if ( overlap )
{
const PixelType input = this->GetInputImage()->GetPixel(neighIndex);
for ( unsigned int k = 0; k < this->GetInputImage()->GetNumberOfComponentsPerPixel(); k++ )
{
output[k] += overlap * static_cast< RealType >( input[k] );
}
totalOverlap += overlap;
}
if ( totalOverlap == 1.0 )
{
// finished
break;
}
}
return ( output );
}
/**
* Evaluate at image index position
*/
template< typename TInputImage, typename TCoordRep >
typename VectorLinearInterpolateNearestNeighborExtrapolateImageFunction< TInputImage, TCoordRep >
::OutputType
VectorLinearInterpolateNearestNeighborExtrapolateImageFunction< TInputImage, TCoordRep >
::EvaluateAtIndex(const IndexType & index) const
{
// Find the index that is closest to the requested one
// but that lies within the image
IndexType insideIndex;
for ( unsigned int dim = 0; dim < ImageDimension; dim++ )
{
if ( index[dim] >= this->m_StartIndex[dim] )
{
if ( index[dim] < this->m_EndIndex[dim] )
{
insideIndex[dim] = index[dim];
}
else
{
insideIndex[dim] = this->m_EndIndex[dim];
}
}
else
{
insideIndex[dim] = this->m_StartIndex[dim];
}
}
// Now call the superclass implementation of EvaluateAtIndex
// since we have ensured that the index lies in the image region
return this->Superclass::EvaluateAtIndex(insideIndex);
}
} // end namespace itk
#endif
|