This file is indexed.

/usr/include/ITK-4.9/itkWeightedCentroidKdTreeGenerator.hxx is in libinsighttoolkit4-dev 4.9.0-4ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkWeightedCentroidKdTreeGenerator_hxx
#define itkWeightedCentroidKdTreeGenerator_hxx

#include "itkWeightedCentroidKdTreeGenerator.h"

namespace itk
{
namespace Statistics
{
template< typename TSample >
WeightedCentroidKdTreeGenerator< TSample >
::WeightedCentroidKdTreeGenerator()
{}

template< typename TSample >
void
WeightedCentroidKdTreeGenerator< TSample >
::PrintSelf(std::ostream & os, Indent indent) const
{
  Superclass::PrintSelf(os, indent);
}

template< typename TSample >
inline typename WeightedCentroidKdTreeGenerator< TSample >::KdTreeNodeType *
WeightedCentroidKdTreeGenerator< TSample >
::GenerateNonterminalNode(unsigned int beginIndex,
                          unsigned int endIndex,
                          MeasurementVectorType & lowerBound,
                          MeasurementVectorType & upperBound,
                          unsigned int level)
{
  MeasurementType dimensionLowerBound;
  MeasurementType dimensionUpperBound;
  MeasurementType partitionValue;
  unsigned int    partitionDimension = 0;
  unsigned int    i;
  unsigned int    j;
  MeasurementType spread;
  MeasurementType maxSpread;
  unsigned int    medianIndex;

  SubsamplePointer subsample = this->GetSubsample();

  // Sanity check. Verify that the subsample has measurement vectors of the
  // same length as the sample generated by the tree.
  if ( this->GetMeasurementVectorSize() != subsample->GetMeasurementVectorSize() )
    {
    itkExceptionMacro(<< "Measurement Vector Length mismatch");
    }

  // calculates the weighted centroid which is the vector sum
  // of all the associated instances.
  typename KdTreeNodeType::CentroidType weightedCentroid;
  NumericTraits<typename KdTreeNodeType::CentroidType>::SetLength( weightedCentroid,
    this->GetMeasurementVectorSize() );
  MeasurementVectorType tempVector;
  weightedCentroid.Fill(NumericTraits< MeasurementType >::ZeroValue());

  for ( i = beginIndex; i < endIndex; i++ )
    {
    tempVector = subsample->GetMeasurementVectorByIndex(i);
    for ( j = 0; j < this->GetMeasurementVectorSize(); j++ )
      {
      weightedCentroid[j] += tempVector[j];
      }
    }

  // find most widely spread dimension
  Algorithm::FindSampleBoundAndMean< SubsampleType >(this->GetSubsample(),
                                                     beginIndex, endIndex,
                                                     m_TempLowerBound, m_TempUpperBound,
                                                     m_TempMean);

  maxSpread = NumericTraits< MeasurementType >::NonpositiveMin();
  for ( i = 0; i < this->GetMeasurementVectorSize(); i++ )
    {
    spread = m_TempUpperBound[i] - m_TempLowerBound[i];
    if ( spread >= maxSpread )
      {
      maxSpread = spread;
      partitionDimension = i;
      }
    }

  medianIndex = ( endIndex - beginIndex ) / 2;

  //
  // Find the medial element by using the NthElement function
  // based on the STL implementation of the QuickSelect algorithm.
  //
  partitionValue =
    Algorithm::NthElement< SubsampleType >(this->GetSubsample(),
                                           partitionDimension,
                                           beginIndex, endIndex,
                                           medianIndex);

  medianIndex += beginIndex;

  // save bounds for cutting dimension
  dimensionLowerBound = lowerBound[partitionDimension];
  dimensionUpperBound = upperBound[partitionDimension];

  upperBound[partitionDimension] = partitionValue;
  const unsigned int beginLeftIndex = beginIndex;
  const unsigned int endLeftIndex   = medianIndex;
  KdTreeNodeType *   left = this->GenerateTreeLoop(beginLeftIndex, endLeftIndex, lowerBound, upperBound, level + 1);
  upperBound[partitionDimension] = dimensionUpperBound;

  lowerBound[partitionDimension] = partitionValue;
  const unsigned int beginRightIndex = medianIndex + 1;
  const unsigned int endRighIndex    = endIndex;
  KdTreeNodeType *   right = this->GenerateTreeLoop(beginRightIndex, endRighIndex, lowerBound, upperBound, level + 1);
  lowerBound[partitionDimension] = dimensionLowerBound;

  typedef KdTreeWeightedCentroidNonterminalNode< TSample > KdTreeNonterminalNodeType;

  KdTreeNonterminalNodeType *nonTerminalNode =
    new KdTreeNonterminalNodeType(partitionDimension,
                                  partitionValue,
                                  left, right,
                                  weightedCentroid,
                                  endIndex - beginIndex);

  nonTerminalNode->AddInstanceIdentifier(
    subsample->GetInstanceIdentifier(medianIndex) );

  return nonTerminalNode;
}
} // end of namespace Statistics
} // end of namespace itk

#endif