This file is indexed.

/usr/include/ITK-4.9/vnl/vnl_finite.h is in libinsighttoolkit4-dev 4.9.0-4ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
// This is core/vnl/vnl_finite.h
#ifndef vnl_finite_h_
#define vnl_finite_h_
//:
// \file
// \brief modulo-N arithmetic (finite ring Z_N and Z_N[X])
//
// The templated vnl_finite_int<N> provides arithmetic "modulo N", i.e.,
// arithmetic in the finite (Galois) field GF(N) in case N is a prime
// or just in the finite ring (or semi-field) of integers modulo N otherwise.
// In that case division makes no sense (unless no zero divisor is involved),
// but all other operations remain valid.
//
// Note that this does not cover finite fields with non-prime sizes (4,8,9,...).
// These are covered by the vnl_finite_int_poly<N,M> class, which implements
// arithmetic with polynomials of degree < M over vnl_finite_int<N>.
// Multiplication is defined modulo a degree M polynomial.
//
// For N prime, and when the "modulo" polynomial is irreducible,
// vnl_finite_int_poly<N,M> implements the finite field GF(N^M).
//
// \author
//  Peter Vanroose, K.U.Leuven, ESAT/PSI.
// \date 5 May 2002.
//
// \verbatim
// Modifications
//  1 June 2002 - Peter Vanroose - added totient(), decompose(), is_unit(), order(), log(), exp().
//  4 June 2002 - Peter Vanroose - renamed class and file name
//  8 June 2002 - Peter Vanroose - added vnl_finite_int_poly<N,M>
//  16 Dec 2007 - Peter Vanroose - more efficient implementation of Ntothe()
// \endverbatim

#include <vcl_iostream.h>
#include <vcl_cassert.h>
#include <vcl_vector.h>
#include <vcl_cstddef.h>

//: finite modulo-N arithmetic
//
// The templated vnl_finite_int<N> provides arithmetic "modulo N", i.e.,
// arithmetic in the finite (Galois) field GF(N) in case N is a prime
// or just in the finite ring (or semi-field) of integers modulo N otherwise.
// In that case division makes no sense (unless no zero divisor is involved),
// but all other operations remain valid.
//
template <int N>
class vnl_finite_int
{
  int val_; //!< value of this number (smallest nonnegative representation)

  typedef vnl_finite_int<N> Base;
 public:
  //: The number of different finite_int numbers of this type
  static unsigned int cardinality() { return N; }

  //: Creates a finite int element.
  //  Default constructor gives 0.
  //  Also serves as automatic cast from int to vnl_finite_int.
  inline vnl_finite_int(int x = 0) : val_((x%=N)<0?N+x:x), mo_(0), lp1_(0) {assert(N>1);}
  //  Copy constructor
  inline vnl_finite_int(Base const& x) : val_(int(x)), mo_(x.mo_), lp1_(x.lp1_) {}
  //  Destructor
  inline ~vnl_finite_int() {}
  // Implicit conversions
  inline operator int() const { return val_; }
  inline operator int() { return val_; }
  inline operator long() const { return val_; }
  inline operator long() { return val_; }
  inline operator short() const { short r = (short)val_; assert(r == val_); return r; }
  inline operator short() { short r = (short)val_; assert(r == val_); return r; }

  //: Assignment
  inline Base& operator=(Base const& x) { val_ = int(x); mo_=x.mo_; lp1_=x.lp1_; return *this; }
  inline Base& operator=(int x) { x%=N; val_ = x<0 ? N+x : x; mo_=lp1_=0; return *this; }

  //: Comparison of finite int numbers.
  // Note that finite ints have no order, so < and > make no sense.
  inline bool operator==(Base const& x) const { return val_ == int(x); }
  inline bool operator!=(Base const& x) const { return val_ != int(x); }
  inline bool operator==(int x) const { return operator==(Base(x)); }
  inline bool operator!=(int x) const { return !operator==(x); }

  //: Unary minus - returns the additive inverse
  inline Base operator-() const { return Base(N-val_); }
  //: Unary plus - returns the current number
  inline Base operator+() const { return *this; }
  //: Unary not - returns true if finite int number is equal to zero.
  inline bool operator!() const { return val_ == 0; }

  //: Plus&assign: replace lhs by lhs + rhs
  inline Base& operator+=(Base const& r) { mo_=lp1_=0; val_ += int(r); if (val_ >= int(N)) val_ -= N; return *this; }
  inline Base& operator+=(int r) { return operator=(val_+r); }
  //: Minus&assign: replace lhs by lhs - rhs
  inline Base& operator-=(Base const& r) { mo_=lp1_=0; val_ -= int(r); if (val_ < 0) val_ += N; return *this; }
  inline Base& operator-=(int r) { return operator=(val_-r); }
  //: Multiply&assign: replace lhs by lhs * rhs
  inline Base& operator*=(int r) {
    r %=N; if (r<0) r=N+r;
    // This rather complicated implementation is necessary to avoid integer overflow
    if (N<=0x7fff || (val_<=0x7fff && r<=0x7fff)) { val_ *= r; val_ %= N; return *this; }
    else { int v=val_; operator+=(v); operator*=(r/2); if (r%2) operator+=(v); return *this; }
  }
  //: Multiply&assign: replace lhs by lhs * rhs
  inline Base& operator*=(Base const& r) {
    mo_=0;
    if (lp1_!=0 && r.lp1_!=0) set_log(lp1_+r.lp1_-2); else lp1_=0;
    // This rather complicated implementation is necessary to avoid integer overflow
    unsigned int s=int(r);
    if (N<=0x7fff || (val_<=0x7fff && s<=0x7fff)) { val_ *= s; val_ %= N; return *this; }
    else { int v=val_; operator+=(v); operator*=(s/2); if (s%2) operator+=(v); return *this; }
  }

  //: Return the Euler totient function, i.e., the number of units of this ring
  //  This number also equals the periodicity of the exponent: every unit,
  //  when raised to this power, yields 1.
  static unsigned int totient() {
    static unsigned int t_ = 0; // cached value
    if (t_ != 0) return t_;
    vcl_vector<unsigned int> d = decompose();
    t_ = 1; unsigned int p = 1;
    for (unsigned int i=0; i<d.size(); ++i)
    {
      if (p != d[i]) t_ *= d[i]-1;
      else           t_ *= d[i];
      p = d[i];
    }
    return t_;
  }

  //: Multiplicative inverse.
  //  Uses exp() and log() for efficient computation, unless log() is not defined.
  Base reciproc() const {
    assert(is_unit());
    if (val_==1) return *this;
    Base z = smallest_generator();
    if (z!=1) return exp(Base::totient()-log());
    for (unsigned int r=1; r<=N/2; ++r) {
      unsigned int t=int(*this*int(r));
      if (t==1) return r; else if (t==N-1) return N-r;
    }
    return 0; // This will never be executed
  }

  //: Divide&assign.  Uses r.reciproc() for efficient computation.
  inline Base& operator/=(Base const& r) {
    assert(r.is_unit());
    return val_ == 0 ? operator=(0) : operator*=(r.reciproc());
  }

  //: Pre-increment (++r).
  inline Base& operator++() { mo_=lp1_=0; ++val_; if (val_==N) val_=0; return *this; }
  //: Pre-decrement (--r).
  inline Base& operator--() { mo_=lp1_=0; if (val_==0) val_=N; --val_; return *this; }
  //: Post-increment (r++).
  inline Base operator++(int){Base b=*this; mo_=lp1_=0; ++val_; if (val_==N) val_=0; return b; }
  //: Post-decrement (r--).
  inline Base operator--(int){Base b=*this; mo_=lp1_=0; if (val_==0) val_=N; --val_; return b;}

  //: Write N as the unique product of prime factors.
  static vcl_vector<unsigned int> decompose() {
    static vcl_vector<unsigned int> decomposition_ = vcl_vector<unsigned int>(); // cached value
    if (decomposition_.size() > 0) return decomposition_;
    unsigned int r = N;
    for (unsigned int d=2; d*d<=r; ++d)
      while (r%d == 0) { decomposition_.push_back(d); r /= d; }
    if (r > 1) decomposition_.push_back(r);
    return decomposition_;
  }

  //: Return true when N is a prime number, i.e., when this ring is a field
  static inline bool is_field() {
    vcl_vector<unsigned int> d = Base::decompose();
    return d.size() == 1;
  }

  //: Return true only when x is a unit in this ring.
  //  In a field, all numbers except 0 are units.
  //  The total number of units is given by the Euler totient function.
  inline bool is_unit() const { return gcd(val_) == 1; }

  //: Return true only when x is a zero divisor, i.e., is not a unit.
  inline bool is_zero_divisor() const { return gcd(val_) != 1; }

  //: The additive order of x is the smallest nonnegative r such that r*x == 0.
  inline unsigned int additive_order() const { if (val_ == 0) return 1; return N/gcd(val_); }

  //: The multiplicative order of x is the smallest r (>0) such that x^r == 1.
  unsigned int multiplicative_order() const {
    if (mo_ != 0) return mo_;
    if (gcd(val_) != 1) return -1; // should actually return infinity
    Base y = val_;
    for (int r=1; r<N; ++r) { if (y==1) return mo_=r; y *= val_; }
    return 0; // this should not happen
  }

  //: Return the smallest multiplicative generator of the units in this ring.
  //  This is only possible if the units form a cyclic group for multiplication.
  //  If not, smallest_generator() returns 1 to indicate this fact.
  //  Note that the multiplication group of a finite *field* is always cyclic.
  static Base smallest_generator() {
    static Base gen_ = 0; // cached value
    if (gen_ != 0) return gen_;
    if (N==2) return gen_=1;
    unsigned int h = Base::totient() / 2; // note that totient() is always even
    for (gen_=2; gen_!=0; ++gen_) {
      // calculate gen_^h
      unsigned int g=h; Base y = 1, z = gen_; while (g>0) { if (g%2) y *= z; g/=2; z*=z; }
      // quick elimination of non-generator:
      if (y == 1) continue;
      // calculate gen_.multiplicative_order() only if really necessary:
      if (gen_.multiplicative_order() == Base::totient()) { gen_.set_log(1); return gen_; }
    }
    assert(!Base::is_field()); // can only reach this point when N is not prime
    return gen_=1;
  }

  //: Return the r-th power of this number.
  inline Base pow(int r) {
    r %= Base::totient(); if (r<0) r += Base::totient();
    if (r==0) return 1; if (r==1) return *this;
    Base y = 1, z = *this; int s=r; while (s!=0) { if (s%2) y*=z; s/=2; z*=z; }
    if (lp1_ != 0) y.set_log(r*(lp1_-1));
    return y;
  }

  //: Return the smallest nonnegative exponent r for which x=g^r, where g is the smallest generator.
  unsigned int log() const {
    if (is_zero_divisor()) return -1; // should actually return minus infinity
    if (lp1_ != 0) return lp1_-1;
    Base z = smallest_generator();
    assert(N==2||z!=1); // otherwise, the units of this ring do not form a cyclic group
    Base y = 1;
    for (lp1_=1; lp1_<=N; ++lp1_) {
      if (y == *this) return lp1_-1;
      y *= z;
    }
    return -1; // should never reach this point
  }

  //: Return the inverse of log(), i.e., return g^r where g is the smallest generator.
  static inline Base exp(int r) {
    Base z = smallest_generator();
    assert(N==2||z!=1); // otherwise, the units of this ring do not form a cyclic group
    return z.pow(r);
  }

  //: Calculate the greatest common divisor of l and N.
  static inline unsigned int gcd(unsigned int l, unsigned int n) {
    unsigned int l1 = n;
    while (l!=0) { unsigned int t = l; l = l1 % l; l1 = t; }
    return l1;
  }
  static inline unsigned int gcd(unsigned int l) { return gcd(l, N); }

 private:
  //: private function to set cached value of lp1_ when available
  void set_log(unsigned int r) const { r %= Base::totient(); lp1_ = r+1; }

  mutable unsigned int mo_; //!< cached value for multiplicative order
  mutable unsigned int lp1_; //!< cached value for 1+log()
};

//: formatted output
// \relatesalso vnl_finite_int
template <int N>
inline vcl_ostream& operator<< (vcl_ostream& s, vnl_finite_int<N> const& r)
{
  return s << int(r);
}

//: simple input
// \relatesalso vnl_finite_int
template <int N>
inline vcl_istream& operator>> (vcl_istream& s, vnl_finite_int<N>& r)
{
  int n; s >> n; r=n; return s;
}

//: Returns the sum of two finite int numbers.
// \relatesalso vnl_finite_int
template <int N>
inline vnl_finite_int<N> operator+ (vnl_finite_int<N> const& r1, vnl_finite_int<N> const& r2)
{
  vnl_finite_int<N> result(r1); return result += r2;
}

//: Returns the sum of two finite int numbers.
// \relatesalso vnl_finite_int
template <int N>
inline vnl_finite_int<N> operator+ (vnl_finite_int<N> const& r1, int r2)
{
  vnl_finite_int<N> result(r1); return result += r2;
}

//: Returns the sum of two finite int numbers.
// \relatesalso vnl_finite_int
template <int N>
inline vnl_finite_int<N> operator+ (int r2, vnl_finite_int<N> const& r1)
{
  vnl_finite_int<N> result(r1); return result += r2;
}

//: Returns the difference of two finite int numbers.
// \relatesalso vnl_finite_int
template <int N>
inline vnl_finite_int<N> operator- (vnl_finite_int<N> const& r1, vnl_finite_int<N> const& r2)
{
  vnl_finite_int<N> result(r1); return result -= r2;
}

//: Returns the difference of two finite int numbers.
// \relatesalso vnl_finite_int
template <int N>
inline vnl_finite_int<N> operator- (vnl_finite_int<N> const& r1, int r2)
{
  vnl_finite_int<N> result(r1); return result -= r2;
}

//: Returns the difference of two finite int numbers.
// \relatesalso vnl_finite_int
template <int N>
inline vnl_finite_int<N> operator- (int r2, vnl_finite_int<N> const& r1)
{
  vnl_finite_int<N> result(-r1); return result += r2;
}

//: Returns the product of two finite int numbers.
// \relatesalso vnl_finite_int
template <int N>
inline vnl_finite_int<N> operator* (vnl_finite_int<N> const& r1, vnl_finite_int<N> const& r2)
{
  vnl_finite_int<N> result(r1); return result *= r2;
}

//: Returns the product of two finite int numbers.
// \relatesalso vnl_finite_int
template <int N>
inline vnl_finite_int<N> operator* (vnl_finite_int<N> const& r1, int r2)
{
  vnl_finite_int<N> result(r1); return result *= r2;
}

//: Returns the product of two finite int numbers.
// \relatesalso vnl_finite_int
template <int N>
inline vnl_finite_int<N> operator* (int r2, vnl_finite_int<N> const& r1)
{
  vnl_finite_int<N> result(r1); return result *= r2;
}

//: Returns the quotient of two finite int numbers.
//  Uses r2.reciproc() for efficient computation.
// \relatesalso vnl_finite_int
template <int N>
inline vnl_finite_int<N> operator/(vnl_finite_int<N> const& r1, vnl_finite_int<N> const& r2)
{
  assert(r2.is_unit()); return r1 == 0 ? vnl_finite_int<N>(0) : r1*r2.reciproc();
}

//: Returns the quotient of two finite int numbers.
// \relatesalso vnl_finite_int
template <int N>
inline vnl_finite_int<N> operator/ (vnl_finite_int<N> const& r1, int r2)
{
  vnl_finite_int<N> result(r1); return result /= r2;
}

//: Returns the quotient of two finite int numbers.
// \relatesalso vnl_finite_int
template <int N>
inline vnl_finite_int<N> operator/ (int r1, vnl_finite_int<N> const& r2)
{
  vnl_finite_int<N> result(r1); return result /= r2;
}

//:
// \relatesalso vnl_finite_int
template <int N>
inline bool operator== (int  r1, vnl_finite_int<N> const& r2) { return r2==r1; }

//:
// \relatesalso vnl_finite_int
template <int N>
inline bool operator!= (int  r1, vnl_finite_int<N> const& r2) { return r2!=r1; }

//:
// \relatesalso vnl_finite_int
template <int N>
inline vnl_finite_int<N> vnl_math_squared_magnitude(vnl_finite_int<N> const& x) { return x*x; }

//:
// \relatesalso vnl_finite_int
template <int N>
inline vnl_finite_int<N> vnl_math_sqr(vnl_finite_int<N> const& x) { return x*x; }

//:
// \relatesalso vnl_finite_int
template <int N>
inline bool vnl_math_isnan(vnl_finite_int<N> const& ){return false;}

//:
// \relatesalso vnl_finite_int
template <int N>
inline bool vnl_math_isfinite(vnl_finite_int<N> const& x){return true;}

//: finite modulo-N arithmetic with polynomials of degree < M
//
// This class implements arithmetic with polynomials of degree < M over
// vnl_finite_int<N>. Multiplication is defined modulo a polynomial of degree M.
//
// For N prime, and when the "modulo" polynomial is irreducible,
// vnl_finite_int_poly<N,M> implements the finite field GF(N^M).
//
// Addition, subtraction and scalar multiplication are already defined without
// the presence of a "modulo" polynomial.  Restricted to these operations,
// vnl_finite_int_poly<N,M> forms an M-dimensional vector space over
// vnl_finite_int<N>.  The current implementation does not yet implement
// anything more than that.
//
template <int N, int M>
class vnl_finite_int_poly
{
  typedef vnl_finite_int_poly<N,M> Base;
  typedef vnl_finite_int<N> Scalar;

  vcl_vector<Scalar> val_; //!< M-tuple (or degree M-1 polynomial) representing this

  // This essentially implements std::pow(N,int) which is not always available
  static unsigned int Ntothe(unsigned int m) { return m==0?1:m==1?N:Ntothe(m/2)*Ntothe((m+1)/2); }
 public:
  //: The number of different finite_int polynomials of this type
  static unsigned int cardinality() { return Ntothe(M); }

  //: Creates a general finite_int_poly.
  inline vnl_finite_int_poly(vcl_vector<Scalar> const& p) : val_(p) { assert(N>1); assert(M>0); assert(p.size()<=M); }
  //: Creates a degree 0 finite_int_poly.
  inline vnl_finite_int_poly(Scalar const& n) : val_(vcl_vector<Scalar>(1)) { assert(N>1); assert(M>0); val_[0]=n; }
  //: Default constructor. Creates a degree 0 finite_int_poly equal to 0.
  inline vnl_finite_int_poly() : val_(vcl_vector<Scalar>(1)) { assert(N>1); assert(M>0); val_[0]=0; }
  //  Copy constructor
  inline vnl_finite_int_poly(Base const& x) : val_(x.val_) {}
  //  Destructor
  inline ~vnl_finite_int_poly() {}

  //: Formal degree of this polynomial
  inline vcl_size_t deg() const { return val_.size() - 1; }

  //: Effective degree of this polynomial; equals -1 when this polynomial is 0.
  int degree() const { for (int i=deg(); i>=0; --i) if (val_[i]!=0) return i; return -1; }

  //: Access to individual coefficients
  inline Scalar operator[](unsigned int i) const { assert(i<M); return i<=deg() ? val_[i] : Scalar(0); }

  //: Assignment
  inline Base& operator=(Base const& x) { val_ = x.val_; return *this; }
  inline Base& operator=(Scalar const& n) { val_ = vcl_vector<Scalar>(1); val_[0] = n; return *this; }

  //: Comparison of finite int polys.
  bool operator==(Base const& x) const {
    for (unsigned int i=0; i<=deg(); ++i)
      if (val_[i] != x[i]) return false;
    for (unsigned int i=deg()+1; i<=x.deg(); ++i)
      if (x[i] != 0) return false;
    return true;
  }
  inline bool operator!=(Base const& x) const { return !operator==(x); }
  bool operator==(Scalar const& x) const {
    if (x!=val_[0]) return false;
    for (unsigned int i=1; i<=deg(); ++i) if (val_[i] != 0) return false;
    return true;
  }
  inline bool operator!=(Scalar const& x) const { return !operator==(x); }

  //: Unary minus - returns the additive inverse
  Base operator-() const { vcl_vector<Scalar> p = val_; for (unsigned int i=0; i<p.size(); ++i) p[i]=-p[i]; return p; }
  //: Unary plus - returns the current polynomial
  inline Base operator+() const { return *this; }
  //: Unary not - returns true if finite int poly is equal to zero.
  bool operator!() const { for (unsigned int i=0; i<=deg(); ++i) if (val_[i] != 0) return false; return true; }

  //: Plus&assign: replace lhs by lhs + rhs
  Base& operator+=(Base const& r) {
    for (unsigned int i=0; i<=r.deg(); ++i)
      if (i<=deg()) val_[i] += r[i];
      else          val_.push_back(r[i]);
    return *this;
  }
  //: Minus&assign: replace lhs by lhs - rhs
  Base& operator-=(Base const& r) {
    for (unsigned int i=0; i<=r.deg(); ++i)
      if (i<=deg()) val_[i] -= r[i];
      else          val_.push_back(-r[i]);
    return *this;
  }

  //: Scalar multiple of this
  Base& operator*=(Scalar const& n) { for (unsigned int i=0; i<=deg(); ++i) val_[i] *= n; return *this; }

  //: The additive order of x is the smallest positive r such that r*x == 0.
  unsigned int additive_order() const {
    unsigned int r = N;
    for (unsigned int i=0; i<=deg(); ++i)
      if (val_[i] != 0) r=Scalar::gcd(val_[i],r);
    return N/r;
  }

  //: get/set the (irreducible) modulo polynomial of degree M
  //  Note that this polynomial has to be set only once, i.e., once set,
  //  it applies to all vnl_finite_int_polys with the same N and M.
  static vcl_vector<Scalar>& modulo_polynomial(vcl_vector<Scalar> p = vcl_vector<Scalar>())
  {
    static vcl_vector<Scalar> poly_(M+1, Scalar(0));
    if (p.size() == 0) { // retrieval
      assert(poly_[M] != 0); // cannot retrieve before having set
    }
    else
    {
      assert(p.size() == M+1 && p[M].is_unit());// must be of effective degree M
      // Now set poly_, thereby making the coefficient poly_[M] equal to -1.
      Scalar f = -1/p[M];
      for (int m=0; m<=M; ++m) poly_[m] = f*p[m];
    }
    return poly_;
  }

  //: Multiply&assign: replace lhs by lhs * rhs, modulo the "modulo" polynomial
  Base& operator*=(Base const& r) {
    Base x = *this; *this = r; *this *= x[0];
    while (val_.size() < M) val_.push_back(0);
    for (int i=1; i<=x.degree(); ++i)
      for (unsigned int j=0; j<=r.deg(); ++j)
        add_modulo_poly(i+j, x[i]*r[j]);
    return *this;
  }

  //: Return the multiplicative order of this polynomial.
  inline unsigned int multiplicative_order() const {
    Base t = Scalar(1);
    unsigned int order = 0;
    do t *= *this, ++order; while (t != Scalar(1) && t != Scalar(0));
    return t==Scalar(1) ? order : -1;
  }

  //: Return true when this ring is a field.
  //  Note that this requires that N is a prime, but that condition is not
  //  sufficient: also the "modulo" polynomial must be irreducible.
  static inline bool is_field() {
    if (!Scalar::is_field()) return false;

    vcl_vector<Scalar> mod_p = Base::modulo_polynomial();
    mod_p.pop_back(); // remove the "-1" coefficient of X^M
    return Base(mod_p).multiplicative_order()+1 == Base::cardinality();
  }

  //: Return the smallest multiplicative generator of the units in this ring.
  //  This is only possible if the units form a cyclic group for multiplication.
  //  If not, smallest_generator() returns 1 to indicate this fact.
  //  Note that the multiplication group of a finite *field* is always cyclic.
  static Base smallest_generator() {
    if (!Base::is_field()) return Scalar(1);
    vcl_vector<Scalar> mod_p = Base::modulo_polynomial();
    mod_p.pop_back(); // remove the "-1" coefficient of X^M
    return Base(mod_p);
  }

 private:
  //: Add x to the i-th degree coefficient of val_, possibly reducing modulo the "modulo" poly.
  void add_modulo_poly(unsigned int m, Scalar const& x)
  {
    if (m < M) val_[m] += x;
    else {
      vcl_vector<Scalar> p = modulo_polynomial(); // where p[M] == -1
      for (int k=0; k<M; ++k) add_modulo_poly(m-M+k, x*p[k]); // recursive call
    }
  }
};

//: Returns the sum of two finite int polynomials.
// \relatesalso vnl_finite_int_poly
template <int N, int M>
inline vnl_finite_int_poly<N,M> operator+ (vnl_finite_int_poly<N,M> const& r1, vnl_finite_int_poly<N,M> const& r2)
{
  vnl_finite_int_poly<N,M> result=r1; return result += r2;
}

//: Returns the difference of two finite int polynomials.
// \relatesalso vnl_finite_int_poly
template <int N, int M>
inline vnl_finite_int_poly<N,M> operator- (vnl_finite_int_poly<N,M> const& r1, vnl_finite_int_poly<N,M> const& r2)
{
  vnl_finite_int_poly<N,M> result=r1; return result -= r2;
}

//: Returns a scalar multiple of a finite int polynomial.
// \relatesalso vnl_finite_int
// \relatesalso vnl_finite_int_poly
template <int N, int M>
inline vnl_finite_int_poly<N,M> operator* (vnl_finite_int_poly<N,M> const& r1, vnl_finite_int<N> const& r2)
{
  vnl_finite_int_poly<N,M> result(r1); return result *= r2;
}

//: Returns a scalar multiple of a finite int polynomial.
// \relatesalso vnl_finite_int
// \relatesalso vnl_finite_int_poly
template <int N, int M>
inline vnl_finite_int_poly<N,M> operator* (vnl_finite_int<N> const& r2, vnl_finite_int_poly<N,M> const& r1)
{
  vnl_finite_int_poly<N,M> result(r1); return result *= r2;
}

//: Multiplies two finite int polynomials.
//  NOTE: this requires the "modulo" polynomial to be set.
//  Do this by calling modulo_polynomial(p), where p is a vector of length M+1.
// \relatesalso vnl_finite_int_poly
template <int N, int M>
inline vnl_finite_int_poly<N,M> operator* (vnl_finite_int_poly<N,M> const& r1, vnl_finite_int_poly<N,M> const& r2)
{
  vnl_finite_int_poly<N,M> result(r1); return result *= r2;
}

//: formatted output
// \relatesalso vnl_finite_int_poly
template <int N, int M>
inline vcl_ostream& operator<< (vcl_ostream& s, vnl_finite_int_poly<N,M> const& r)
{
  bool out = false;
  for (unsigned int i=0; i<=r.deg(); ++i) {
    if (r[i] == 0) continue;
    if (out) s << '+';
    out = true;
    if (r[i] != 1 || i==0) s << r[i];
    if (i>0) s << 'X';
    if (i>1) s << '^' << i;
  }
  if (!out) s << '0';
  return s;
}

#endif // vnl_finite_h_