/usr/include/ITK-4.9/vnl/vnl_finite.h is in libinsighttoolkit4-dev 4.9.0-4ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 | // This is core/vnl/vnl_finite.h
#ifndef vnl_finite_h_
#define vnl_finite_h_
//:
// \file
// \brief modulo-N arithmetic (finite ring Z_N and Z_N[X])
//
// The templated vnl_finite_int<N> provides arithmetic "modulo N", i.e.,
// arithmetic in the finite (Galois) field GF(N) in case N is a prime
// or just in the finite ring (or semi-field) of integers modulo N otherwise.
// In that case division makes no sense (unless no zero divisor is involved),
// but all other operations remain valid.
//
// Note that this does not cover finite fields with non-prime sizes (4,8,9,...).
// These are covered by the vnl_finite_int_poly<N,M> class, which implements
// arithmetic with polynomials of degree < M over vnl_finite_int<N>.
// Multiplication is defined modulo a degree M polynomial.
//
// For N prime, and when the "modulo" polynomial is irreducible,
// vnl_finite_int_poly<N,M> implements the finite field GF(N^M).
//
// \author
// Peter Vanroose, K.U.Leuven, ESAT/PSI.
// \date 5 May 2002.
//
// \verbatim
// Modifications
// 1 June 2002 - Peter Vanroose - added totient(), decompose(), is_unit(), order(), log(), exp().
// 4 June 2002 - Peter Vanroose - renamed class and file name
// 8 June 2002 - Peter Vanroose - added vnl_finite_int_poly<N,M>
// 16 Dec 2007 - Peter Vanroose - more efficient implementation of Ntothe()
// \endverbatim
#include <vcl_iostream.h>
#include <vcl_cassert.h>
#include <vcl_vector.h>
#include <vcl_cstddef.h>
//: finite modulo-N arithmetic
//
// The templated vnl_finite_int<N> provides arithmetic "modulo N", i.e.,
// arithmetic in the finite (Galois) field GF(N) in case N is a prime
// or just in the finite ring (or semi-field) of integers modulo N otherwise.
// In that case division makes no sense (unless no zero divisor is involved),
// but all other operations remain valid.
//
template <int N>
class vnl_finite_int
{
int val_; //!< value of this number (smallest nonnegative representation)
typedef vnl_finite_int<N> Base;
public:
//: The number of different finite_int numbers of this type
static unsigned int cardinality() { return N; }
//: Creates a finite int element.
// Default constructor gives 0.
// Also serves as automatic cast from int to vnl_finite_int.
inline vnl_finite_int(int x = 0) : val_((x%=N)<0?N+x:x), mo_(0), lp1_(0) {assert(N>1);}
// Copy constructor
inline vnl_finite_int(Base const& x) : val_(int(x)), mo_(x.mo_), lp1_(x.lp1_) {}
// Destructor
inline ~vnl_finite_int() {}
// Implicit conversions
inline operator int() const { return val_; }
inline operator int() { return val_; }
inline operator long() const { return val_; }
inline operator long() { return val_; }
inline operator short() const { short r = (short)val_; assert(r == val_); return r; }
inline operator short() { short r = (short)val_; assert(r == val_); return r; }
//: Assignment
inline Base& operator=(Base const& x) { val_ = int(x); mo_=x.mo_; lp1_=x.lp1_; return *this; }
inline Base& operator=(int x) { x%=N; val_ = x<0 ? N+x : x; mo_=lp1_=0; return *this; }
//: Comparison of finite int numbers.
// Note that finite ints have no order, so < and > make no sense.
inline bool operator==(Base const& x) const { return val_ == int(x); }
inline bool operator!=(Base const& x) const { return val_ != int(x); }
inline bool operator==(int x) const { return operator==(Base(x)); }
inline bool operator!=(int x) const { return !operator==(x); }
//: Unary minus - returns the additive inverse
inline Base operator-() const { return Base(N-val_); }
//: Unary plus - returns the current number
inline Base operator+() const { return *this; }
//: Unary not - returns true if finite int number is equal to zero.
inline bool operator!() const { return val_ == 0; }
//: Plus&assign: replace lhs by lhs + rhs
inline Base& operator+=(Base const& r) { mo_=lp1_=0; val_ += int(r); if (val_ >= int(N)) val_ -= N; return *this; }
inline Base& operator+=(int r) { return operator=(val_+r); }
//: Minus&assign: replace lhs by lhs - rhs
inline Base& operator-=(Base const& r) { mo_=lp1_=0; val_ -= int(r); if (val_ < 0) val_ += N; return *this; }
inline Base& operator-=(int r) { return operator=(val_-r); }
//: Multiply&assign: replace lhs by lhs * rhs
inline Base& operator*=(int r) {
r %=N; if (r<0) r=N+r;
// This rather complicated implementation is necessary to avoid integer overflow
if (N<=0x7fff || (val_<=0x7fff && r<=0x7fff)) { val_ *= r; val_ %= N; return *this; }
else { int v=val_; operator+=(v); operator*=(r/2); if (r%2) operator+=(v); return *this; }
}
//: Multiply&assign: replace lhs by lhs * rhs
inline Base& operator*=(Base const& r) {
mo_=0;
if (lp1_!=0 && r.lp1_!=0) set_log(lp1_+r.lp1_-2); else lp1_=0;
// This rather complicated implementation is necessary to avoid integer overflow
unsigned int s=int(r);
if (N<=0x7fff || (val_<=0x7fff && s<=0x7fff)) { val_ *= s; val_ %= N; return *this; }
else { int v=val_; operator+=(v); operator*=(s/2); if (s%2) operator+=(v); return *this; }
}
//: Return the Euler totient function, i.e., the number of units of this ring
// This number also equals the periodicity of the exponent: every unit,
// when raised to this power, yields 1.
static unsigned int totient() {
static unsigned int t_ = 0; // cached value
if (t_ != 0) return t_;
vcl_vector<unsigned int> d = decompose();
t_ = 1; unsigned int p = 1;
for (unsigned int i=0; i<d.size(); ++i)
{
if (p != d[i]) t_ *= d[i]-1;
else t_ *= d[i];
p = d[i];
}
return t_;
}
//: Multiplicative inverse.
// Uses exp() and log() for efficient computation, unless log() is not defined.
Base reciproc() const {
assert(is_unit());
if (val_==1) return *this;
Base z = smallest_generator();
if (z!=1) return exp(Base::totient()-log());
for (unsigned int r=1; r<=N/2; ++r) {
unsigned int t=int(*this*int(r));
if (t==1) return r; else if (t==N-1) return N-r;
}
return 0; // This will never be executed
}
//: Divide&assign. Uses r.reciproc() for efficient computation.
inline Base& operator/=(Base const& r) {
assert(r.is_unit());
return val_ == 0 ? operator=(0) : operator*=(r.reciproc());
}
//: Pre-increment (++r).
inline Base& operator++() { mo_=lp1_=0; ++val_; if (val_==N) val_=0; return *this; }
//: Pre-decrement (--r).
inline Base& operator--() { mo_=lp1_=0; if (val_==0) val_=N; --val_; return *this; }
//: Post-increment (r++).
inline Base operator++(int){Base b=*this; mo_=lp1_=0; ++val_; if (val_==N) val_=0; return b; }
//: Post-decrement (r--).
inline Base operator--(int){Base b=*this; mo_=lp1_=0; if (val_==0) val_=N; --val_; return b;}
//: Write N as the unique product of prime factors.
static vcl_vector<unsigned int> decompose() {
static vcl_vector<unsigned int> decomposition_ = vcl_vector<unsigned int>(); // cached value
if (decomposition_.size() > 0) return decomposition_;
unsigned int r = N;
for (unsigned int d=2; d*d<=r; ++d)
while (r%d == 0) { decomposition_.push_back(d); r /= d; }
if (r > 1) decomposition_.push_back(r);
return decomposition_;
}
//: Return true when N is a prime number, i.e., when this ring is a field
static inline bool is_field() {
vcl_vector<unsigned int> d = Base::decompose();
return d.size() == 1;
}
//: Return true only when x is a unit in this ring.
// In a field, all numbers except 0 are units.
// The total number of units is given by the Euler totient function.
inline bool is_unit() const { return gcd(val_) == 1; }
//: Return true only when x is a zero divisor, i.e., is not a unit.
inline bool is_zero_divisor() const { return gcd(val_) != 1; }
//: The additive order of x is the smallest nonnegative r such that r*x == 0.
inline unsigned int additive_order() const { if (val_ == 0) return 1; return N/gcd(val_); }
//: The multiplicative order of x is the smallest r (>0) such that x^r == 1.
unsigned int multiplicative_order() const {
if (mo_ != 0) return mo_;
if (gcd(val_) != 1) return -1; // should actually return infinity
Base y = val_;
for (int r=1; r<N; ++r) { if (y==1) return mo_=r; y *= val_; }
return 0; // this should not happen
}
//: Return the smallest multiplicative generator of the units in this ring.
// This is only possible if the units form a cyclic group for multiplication.
// If not, smallest_generator() returns 1 to indicate this fact.
// Note that the multiplication group of a finite *field* is always cyclic.
static Base smallest_generator() {
static Base gen_ = 0; // cached value
if (gen_ != 0) return gen_;
if (N==2) return gen_=1;
unsigned int h = Base::totient() / 2; // note that totient() is always even
for (gen_=2; gen_!=0; ++gen_) {
// calculate gen_^h
unsigned int g=h; Base y = 1, z = gen_; while (g>0) { if (g%2) y *= z; g/=2; z*=z; }
// quick elimination of non-generator:
if (y == 1) continue;
// calculate gen_.multiplicative_order() only if really necessary:
if (gen_.multiplicative_order() == Base::totient()) { gen_.set_log(1); return gen_; }
}
assert(!Base::is_field()); // can only reach this point when N is not prime
return gen_=1;
}
//: Return the r-th power of this number.
inline Base pow(int r) {
r %= Base::totient(); if (r<0) r += Base::totient();
if (r==0) return 1; if (r==1) return *this;
Base y = 1, z = *this; int s=r; while (s!=0) { if (s%2) y*=z; s/=2; z*=z; }
if (lp1_ != 0) y.set_log(r*(lp1_-1));
return y;
}
//: Return the smallest nonnegative exponent r for which x=g^r, where g is the smallest generator.
unsigned int log() const {
if (is_zero_divisor()) return -1; // should actually return minus infinity
if (lp1_ != 0) return lp1_-1;
Base z = smallest_generator();
assert(N==2||z!=1); // otherwise, the units of this ring do not form a cyclic group
Base y = 1;
for (lp1_=1; lp1_<=N; ++lp1_) {
if (y == *this) return lp1_-1;
y *= z;
}
return -1; // should never reach this point
}
//: Return the inverse of log(), i.e., return g^r where g is the smallest generator.
static inline Base exp(int r) {
Base z = smallest_generator();
assert(N==2||z!=1); // otherwise, the units of this ring do not form a cyclic group
return z.pow(r);
}
//: Calculate the greatest common divisor of l and N.
static inline unsigned int gcd(unsigned int l, unsigned int n) {
unsigned int l1 = n;
while (l!=0) { unsigned int t = l; l = l1 % l; l1 = t; }
return l1;
}
static inline unsigned int gcd(unsigned int l) { return gcd(l, N); }
private:
//: private function to set cached value of lp1_ when available
void set_log(unsigned int r) const { r %= Base::totient(); lp1_ = r+1; }
mutable unsigned int mo_; //!< cached value for multiplicative order
mutable unsigned int lp1_; //!< cached value for 1+log()
};
//: formatted output
// \relatesalso vnl_finite_int
template <int N>
inline vcl_ostream& operator<< (vcl_ostream& s, vnl_finite_int<N> const& r)
{
return s << int(r);
}
//: simple input
// \relatesalso vnl_finite_int
template <int N>
inline vcl_istream& operator>> (vcl_istream& s, vnl_finite_int<N>& r)
{
int n; s >> n; r=n; return s;
}
//: Returns the sum of two finite int numbers.
// \relatesalso vnl_finite_int
template <int N>
inline vnl_finite_int<N> operator+ (vnl_finite_int<N> const& r1, vnl_finite_int<N> const& r2)
{
vnl_finite_int<N> result(r1); return result += r2;
}
//: Returns the sum of two finite int numbers.
// \relatesalso vnl_finite_int
template <int N>
inline vnl_finite_int<N> operator+ (vnl_finite_int<N> const& r1, int r2)
{
vnl_finite_int<N> result(r1); return result += r2;
}
//: Returns the sum of two finite int numbers.
// \relatesalso vnl_finite_int
template <int N>
inline vnl_finite_int<N> operator+ (int r2, vnl_finite_int<N> const& r1)
{
vnl_finite_int<N> result(r1); return result += r2;
}
//: Returns the difference of two finite int numbers.
// \relatesalso vnl_finite_int
template <int N>
inline vnl_finite_int<N> operator- (vnl_finite_int<N> const& r1, vnl_finite_int<N> const& r2)
{
vnl_finite_int<N> result(r1); return result -= r2;
}
//: Returns the difference of two finite int numbers.
// \relatesalso vnl_finite_int
template <int N>
inline vnl_finite_int<N> operator- (vnl_finite_int<N> const& r1, int r2)
{
vnl_finite_int<N> result(r1); return result -= r2;
}
//: Returns the difference of two finite int numbers.
// \relatesalso vnl_finite_int
template <int N>
inline vnl_finite_int<N> operator- (int r2, vnl_finite_int<N> const& r1)
{
vnl_finite_int<N> result(-r1); return result += r2;
}
//: Returns the product of two finite int numbers.
// \relatesalso vnl_finite_int
template <int N>
inline vnl_finite_int<N> operator* (vnl_finite_int<N> const& r1, vnl_finite_int<N> const& r2)
{
vnl_finite_int<N> result(r1); return result *= r2;
}
//: Returns the product of two finite int numbers.
// \relatesalso vnl_finite_int
template <int N>
inline vnl_finite_int<N> operator* (vnl_finite_int<N> const& r1, int r2)
{
vnl_finite_int<N> result(r1); return result *= r2;
}
//: Returns the product of two finite int numbers.
// \relatesalso vnl_finite_int
template <int N>
inline vnl_finite_int<N> operator* (int r2, vnl_finite_int<N> const& r1)
{
vnl_finite_int<N> result(r1); return result *= r2;
}
//: Returns the quotient of two finite int numbers.
// Uses r2.reciproc() for efficient computation.
// \relatesalso vnl_finite_int
template <int N>
inline vnl_finite_int<N> operator/(vnl_finite_int<N> const& r1, vnl_finite_int<N> const& r2)
{
assert(r2.is_unit()); return r1 == 0 ? vnl_finite_int<N>(0) : r1*r2.reciproc();
}
//: Returns the quotient of two finite int numbers.
// \relatesalso vnl_finite_int
template <int N>
inline vnl_finite_int<N> operator/ (vnl_finite_int<N> const& r1, int r2)
{
vnl_finite_int<N> result(r1); return result /= r2;
}
//: Returns the quotient of two finite int numbers.
// \relatesalso vnl_finite_int
template <int N>
inline vnl_finite_int<N> operator/ (int r1, vnl_finite_int<N> const& r2)
{
vnl_finite_int<N> result(r1); return result /= r2;
}
//:
// \relatesalso vnl_finite_int
template <int N>
inline bool operator== (int r1, vnl_finite_int<N> const& r2) { return r2==r1; }
//:
// \relatesalso vnl_finite_int
template <int N>
inline bool operator!= (int r1, vnl_finite_int<N> const& r2) { return r2!=r1; }
//:
// \relatesalso vnl_finite_int
template <int N>
inline vnl_finite_int<N> vnl_math_squared_magnitude(vnl_finite_int<N> const& x) { return x*x; }
//:
// \relatesalso vnl_finite_int
template <int N>
inline vnl_finite_int<N> vnl_math_sqr(vnl_finite_int<N> const& x) { return x*x; }
//:
// \relatesalso vnl_finite_int
template <int N>
inline bool vnl_math_isnan(vnl_finite_int<N> const& ){return false;}
//:
// \relatesalso vnl_finite_int
template <int N>
inline bool vnl_math_isfinite(vnl_finite_int<N> const& x){return true;}
//: finite modulo-N arithmetic with polynomials of degree < M
//
// This class implements arithmetic with polynomials of degree < M over
// vnl_finite_int<N>. Multiplication is defined modulo a polynomial of degree M.
//
// For N prime, and when the "modulo" polynomial is irreducible,
// vnl_finite_int_poly<N,M> implements the finite field GF(N^M).
//
// Addition, subtraction and scalar multiplication are already defined without
// the presence of a "modulo" polynomial. Restricted to these operations,
// vnl_finite_int_poly<N,M> forms an M-dimensional vector space over
// vnl_finite_int<N>. The current implementation does not yet implement
// anything more than that.
//
template <int N, int M>
class vnl_finite_int_poly
{
typedef vnl_finite_int_poly<N,M> Base;
typedef vnl_finite_int<N> Scalar;
vcl_vector<Scalar> val_; //!< M-tuple (or degree M-1 polynomial) representing this
// This essentially implements std::pow(N,int) which is not always available
static unsigned int Ntothe(unsigned int m) { return m==0?1:m==1?N:Ntothe(m/2)*Ntothe((m+1)/2); }
public:
//: The number of different finite_int polynomials of this type
static unsigned int cardinality() { return Ntothe(M); }
//: Creates a general finite_int_poly.
inline vnl_finite_int_poly(vcl_vector<Scalar> const& p) : val_(p) { assert(N>1); assert(M>0); assert(p.size()<=M); }
//: Creates a degree 0 finite_int_poly.
inline vnl_finite_int_poly(Scalar const& n) : val_(vcl_vector<Scalar>(1)) { assert(N>1); assert(M>0); val_[0]=n; }
//: Default constructor. Creates a degree 0 finite_int_poly equal to 0.
inline vnl_finite_int_poly() : val_(vcl_vector<Scalar>(1)) { assert(N>1); assert(M>0); val_[0]=0; }
// Copy constructor
inline vnl_finite_int_poly(Base const& x) : val_(x.val_) {}
// Destructor
inline ~vnl_finite_int_poly() {}
//: Formal degree of this polynomial
inline vcl_size_t deg() const { return val_.size() - 1; }
//: Effective degree of this polynomial; equals -1 when this polynomial is 0.
int degree() const { for (int i=deg(); i>=0; --i) if (val_[i]!=0) return i; return -1; }
//: Access to individual coefficients
inline Scalar operator[](unsigned int i) const { assert(i<M); return i<=deg() ? val_[i] : Scalar(0); }
//: Assignment
inline Base& operator=(Base const& x) { val_ = x.val_; return *this; }
inline Base& operator=(Scalar const& n) { val_ = vcl_vector<Scalar>(1); val_[0] = n; return *this; }
//: Comparison of finite int polys.
bool operator==(Base const& x) const {
for (unsigned int i=0; i<=deg(); ++i)
if (val_[i] != x[i]) return false;
for (unsigned int i=deg()+1; i<=x.deg(); ++i)
if (x[i] != 0) return false;
return true;
}
inline bool operator!=(Base const& x) const { return !operator==(x); }
bool operator==(Scalar const& x) const {
if (x!=val_[0]) return false;
for (unsigned int i=1; i<=deg(); ++i) if (val_[i] != 0) return false;
return true;
}
inline bool operator!=(Scalar const& x) const { return !operator==(x); }
//: Unary minus - returns the additive inverse
Base operator-() const { vcl_vector<Scalar> p = val_; for (unsigned int i=0; i<p.size(); ++i) p[i]=-p[i]; return p; }
//: Unary plus - returns the current polynomial
inline Base operator+() const { return *this; }
//: Unary not - returns true if finite int poly is equal to zero.
bool operator!() const { for (unsigned int i=0; i<=deg(); ++i) if (val_[i] != 0) return false; return true; }
//: Plus&assign: replace lhs by lhs + rhs
Base& operator+=(Base const& r) {
for (unsigned int i=0; i<=r.deg(); ++i)
if (i<=deg()) val_[i] += r[i];
else val_.push_back(r[i]);
return *this;
}
//: Minus&assign: replace lhs by lhs - rhs
Base& operator-=(Base const& r) {
for (unsigned int i=0; i<=r.deg(); ++i)
if (i<=deg()) val_[i] -= r[i];
else val_.push_back(-r[i]);
return *this;
}
//: Scalar multiple of this
Base& operator*=(Scalar const& n) { for (unsigned int i=0; i<=deg(); ++i) val_[i] *= n; return *this; }
//: The additive order of x is the smallest positive r such that r*x == 0.
unsigned int additive_order() const {
unsigned int r = N;
for (unsigned int i=0; i<=deg(); ++i)
if (val_[i] != 0) r=Scalar::gcd(val_[i],r);
return N/r;
}
//: get/set the (irreducible) modulo polynomial of degree M
// Note that this polynomial has to be set only once, i.e., once set,
// it applies to all vnl_finite_int_polys with the same N and M.
static vcl_vector<Scalar>& modulo_polynomial(vcl_vector<Scalar> p = vcl_vector<Scalar>())
{
static vcl_vector<Scalar> poly_(M+1, Scalar(0));
if (p.size() == 0) { // retrieval
assert(poly_[M] != 0); // cannot retrieve before having set
}
else
{
assert(p.size() == M+1 && p[M].is_unit());// must be of effective degree M
// Now set poly_, thereby making the coefficient poly_[M] equal to -1.
Scalar f = -1/p[M];
for (int m=0; m<=M; ++m) poly_[m] = f*p[m];
}
return poly_;
}
//: Multiply&assign: replace lhs by lhs * rhs, modulo the "modulo" polynomial
Base& operator*=(Base const& r) {
Base x = *this; *this = r; *this *= x[0];
while (val_.size() < M) val_.push_back(0);
for (int i=1; i<=x.degree(); ++i)
for (unsigned int j=0; j<=r.deg(); ++j)
add_modulo_poly(i+j, x[i]*r[j]);
return *this;
}
//: Return the multiplicative order of this polynomial.
inline unsigned int multiplicative_order() const {
Base t = Scalar(1);
unsigned int order = 0;
do t *= *this, ++order; while (t != Scalar(1) && t != Scalar(0));
return t==Scalar(1) ? order : -1;
}
//: Return true when this ring is a field.
// Note that this requires that N is a prime, but that condition is not
// sufficient: also the "modulo" polynomial must be irreducible.
static inline bool is_field() {
if (!Scalar::is_field()) return false;
vcl_vector<Scalar> mod_p = Base::modulo_polynomial();
mod_p.pop_back(); // remove the "-1" coefficient of X^M
return Base(mod_p).multiplicative_order()+1 == Base::cardinality();
}
//: Return the smallest multiplicative generator of the units in this ring.
// This is only possible if the units form a cyclic group for multiplication.
// If not, smallest_generator() returns 1 to indicate this fact.
// Note that the multiplication group of a finite *field* is always cyclic.
static Base smallest_generator() {
if (!Base::is_field()) return Scalar(1);
vcl_vector<Scalar> mod_p = Base::modulo_polynomial();
mod_p.pop_back(); // remove the "-1" coefficient of X^M
return Base(mod_p);
}
private:
//: Add x to the i-th degree coefficient of val_, possibly reducing modulo the "modulo" poly.
void add_modulo_poly(unsigned int m, Scalar const& x)
{
if (m < M) val_[m] += x;
else {
vcl_vector<Scalar> p = modulo_polynomial(); // where p[M] == -1
for (int k=0; k<M; ++k) add_modulo_poly(m-M+k, x*p[k]); // recursive call
}
}
};
//: Returns the sum of two finite int polynomials.
// \relatesalso vnl_finite_int_poly
template <int N, int M>
inline vnl_finite_int_poly<N,M> operator+ (vnl_finite_int_poly<N,M> const& r1, vnl_finite_int_poly<N,M> const& r2)
{
vnl_finite_int_poly<N,M> result=r1; return result += r2;
}
//: Returns the difference of two finite int polynomials.
// \relatesalso vnl_finite_int_poly
template <int N, int M>
inline vnl_finite_int_poly<N,M> operator- (vnl_finite_int_poly<N,M> const& r1, vnl_finite_int_poly<N,M> const& r2)
{
vnl_finite_int_poly<N,M> result=r1; return result -= r2;
}
//: Returns a scalar multiple of a finite int polynomial.
// \relatesalso vnl_finite_int
// \relatesalso vnl_finite_int_poly
template <int N, int M>
inline vnl_finite_int_poly<N,M> operator* (vnl_finite_int_poly<N,M> const& r1, vnl_finite_int<N> const& r2)
{
vnl_finite_int_poly<N,M> result(r1); return result *= r2;
}
//: Returns a scalar multiple of a finite int polynomial.
// \relatesalso vnl_finite_int
// \relatesalso vnl_finite_int_poly
template <int N, int M>
inline vnl_finite_int_poly<N,M> operator* (vnl_finite_int<N> const& r2, vnl_finite_int_poly<N,M> const& r1)
{
vnl_finite_int_poly<N,M> result(r1); return result *= r2;
}
//: Multiplies two finite int polynomials.
// NOTE: this requires the "modulo" polynomial to be set.
// Do this by calling modulo_polynomial(p), where p is a vector of length M+1.
// \relatesalso vnl_finite_int_poly
template <int N, int M>
inline vnl_finite_int_poly<N,M> operator* (vnl_finite_int_poly<N,M> const& r1, vnl_finite_int_poly<N,M> const& r2)
{
vnl_finite_int_poly<N,M> result(r1); return result *= r2;
}
//: formatted output
// \relatesalso vnl_finite_int_poly
template <int N, int M>
inline vcl_ostream& operator<< (vcl_ostream& s, vnl_finite_int_poly<N,M> const& r)
{
bool out = false;
for (unsigned int i=0; i<=r.deg(); ++i) {
if (r[i] == 0) continue;
if (out) s << '+';
out = true;
if (r[i] != 1 || i==0) s << r[i];
if (i>0) s << 'X';
if (i>1) s << '^' << i;
}
if (!out) s << '0';
return s;
}
#endif // vnl_finite_h_
|