/usr/include/ITK-4.9/vnl/vnl_matrix.h is in libinsighttoolkit4-dev 4.9.0-4ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 | // This is core/vnl/vnl_matrix.h
#ifndef vnl_matrix_h_
#define vnl_matrix_h_
#ifdef VCL_NEEDS_PRAGMA_INTERFACE
#pragma interface
#endif
#ifdef __INTEL_COMPILER
#pragma warning disable 444
#endif
//:
// \file
// \brief An ordinary mathematical matrix
// \verbatim
// Modifications
// Apr 21, 1989 - MBN - Initial design and implementation
// Jun 22, 1989 - MBN - Removed non-destructive methods
// Aug 09, 1989 - LGO - Inherit from Generic
// Aug 20, 1989 - MBN - Changed template usage to reflect new syntax
// Sep 11, 1989 - MBN - Added conditional exception handling and base class
// Oct 05, 1989 - LGO - Don't re-allocate data in operator= when same size
// Oct 19, 1989 - LGO - Add extra parameter to varargs constructor
// Oct 19, 1989 - MBN - Added optional argument to set_compare method
// Dec 08, 1989 - LGO - Allocate column data in one chunk
// Dec 08, 1989 - LGO - Clean-up get and put, add const everywhere.
// Dec 19, 1989 - LGO - Remove the map and reduce methods
// Feb 22, 1990 - MBN - Changed size arguments from int to unsigned int
// Jun 30, 1990 - MJF - Added base class name to constructor initializer
// Feb 21, 1992 - VDN - New lite version
// May 05, 1992 - VDN - Use envelope to avoid unnecessary copying
// Sep 30, 1992 - VDN - Matrix inversion with singular value decomposition
// Aug 21, 1996 - AWF - set_identity, normalize_rows, scale_row.
// Sep 30, 1996 - AWF - set_row/column methods. Const-correct data_block().
// 14 Feb 1997 - AWF - get_n_rows, get_n_columns.
// 20 Mar 1997 - PVR - get_row, get_column.
// 24-Oct-2010 - Peter Vanroose - mutators and filling methods now return *this
// 18-Jan-2011 - Peter Vanroose - added methods set_diagonal() & get_diagonal()
// \endverbatim
#include <vcl_iosfwd.h>
#include <vnl/vnl_tag.h>
#include <vnl/vnl_c_vector.h>
#include <vnl/vnl_config.h>
#ifndef NDEBUG
# if VNL_CONFIG_CHECK_BOUNDS
# include <vnl/vnl_error.h>
# include <vcl_cassert.h>
# endif
#else
# undef VNL_CONFIG_CHECK_BOUNDS
# define VNL_CONFIG_CHECK_BOUNDS 0
# undef ERROR_CHECKING
#endif
template <class T> class vnl_vector;
template <class T> class vnl_matrix;
//--------------------------------------------------------------------------------
#ifndef DOXYGEN_SHOULD_SKIP_THIS
#define v vnl_vector<T>
#define m vnl_matrix<T>
#endif // DOXYGEN_SHOULD_SKIP_THIS
template <class T> m operator+(T const&, m const&);
template <class T> m operator-(T const&, m const&);
template <class T> m operator*(T const&, m const&);
template <class T> m element_product(m const&, m const&);
template <class T> m element_quotient(m const&, m const&);
template <class T> T dot_product(m const&, m const&);
template <class T> T inner_product(m const&, m const&);
template <class T> T cos_angle(m const&, m const& );
template <class T> vcl_ostream& operator<<(vcl_ostream&, m const&);
template <class T> vcl_istream& operator>>(vcl_istream&, m&);
#undef v
#undef m
//--------------------------------------------------------------------------------
enum vnl_matrix_type
{
vnl_matrix_null,
vnl_matrix_identity
};
//: An ordinary mathematical matrix
// The vnl_matrix<T> class implements two-dimensional arithmetic
// matrices for a user-specified numeric data type. Using the
// parameterized types facility of C++, it is possible, for
// example, for the user to create a matrix of rational numbers
// by parameterizing the vnl_matrix class over the Rational class.
// The only requirement for the type is that it supports the
// basic arithmetic operators.
//
// Note: Unlike the other sequence classes, the
// vnl_matrix<T> class is fixed-size. It will not grow once the
// size has been specified to the constructor or changed by the
// assignment or multiplication operators. The vnl_matrix<T>
// class is row-based with addresses of rows being cached, and
// elements accessed as m[row][col].
//
// Note: The matrix can, however, be resized using the set_size(nr,nc) function.
//
// Note: Indexing of the matrix is zero-based, so the top-left element is M(0,0).
//
// Note: Inversion of matrix M, and other operations such as solving systems of linear
// equations are handled by the matrix decomposition classes in vnl/algo, such
// as matrix_inverse, svd, qr etc.
//
// Note: Use a vnl_vector<T> with these matrices.
template<class T>
class vnl_matrix
{
public:
//: Default constructor creates an empty matrix of size 0,0.
vnl_matrix() :
num_rows(0),
num_cols(0),
data(0)
{
}
//: Construct a matrix of size r rows by c columns
// Contents are unspecified.
// Complexity $O(1)$
vnl_matrix(unsigned r, unsigned c); // r rows, c cols.
//: Construct a matrix of size r rows by c columns, and all elements equal to v0
// Complexity $O(r.c)$
vnl_matrix(unsigned r, unsigned c, T const& v0); // r rows, c cols, value v0.
//: Construct a matrix of size r rows by c columns, with a special type
// Contents are specified by t
// Complexity $O(r.c)$
vnl_matrix(unsigned r, unsigned c, vnl_matrix_type t); // r rows, c cols, special type
//: Construct a matrix of size r rows by c columns, initialised by an automatic array
// The first n elements, are initialised row-wise, to values.
// Complexity $O(n)$
vnl_matrix(unsigned r, unsigned c, unsigned n, T const values[]); // use automatic arrays.
//: Construct a matrix of size r rows by c columns, initialised by a memory block
// The values are initialise row wise from the data.
// Complexity $O(r.c)$
vnl_matrix(T const* data_block, unsigned r, unsigned c); // fill row-wise.
//: Copy construct a matrix
// Complexity $O(r.c)$
vnl_matrix(vnl_matrix<T> const&); // from another matrix.
#ifndef VXL_DOXYGEN_SHOULD_SKIP_THIS
// <internal>
// These constructors are here so that operator* etc can take
// advantage of the C++ return value optimization.
vnl_matrix(vnl_matrix<T> const &, vnl_matrix<T> const &, vnl_tag_add); // M + M
vnl_matrix(vnl_matrix<T> const &, vnl_matrix<T> const &, vnl_tag_sub); // M - M
vnl_matrix(vnl_matrix<T> const &, T, vnl_tag_mul); // M * s
vnl_matrix(vnl_matrix<T> const &, T, vnl_tag_div); // M / s
vnl_matrix(vnl_matrix<T> const &, T, vnl_tag_add); // M + s
vnl_matrix(vnl_matrix<T> const &, T, vnl_tag_sub); // M - s
vnl_matrix(vnl_matrix<T> const &, vnl_matrix<T> const &, vnl_tag_mul); // M * M
vnl_matrix(vnl_matrix<T> &that, vnl_tag_grab)
: num_rows(that.num_rows), num_cols(that.num_cols), data(that.data)
{ that.num_cols=that.num_rows=0; that.data=0; } // "*this" now uses "that"'s data.
// </internal>
#endif
//: Matrix destructor
~vnl_matrix();
// Basic 2D-Array functionality-------------------------------------------
//: Return number of rows
unsigned rows() const { return num_rows; }
//: Return number of columns
// A synonym for cols()
unsigned columns() const { return num_cols; }
//: Return number of columns
// A synonym for columns()
unsigned cols() const { return num_cols; }
//: Return number of elements
// This equals rows() * cols()
unsigned size() const { return rows()*cols(); }
//: set element with boundary checks if error checking is on.
void put(unsigned r, unsigned c, T const&);
//: get element with boundary checks if error checking is on.
T get(unsigned r, unsigned c) const;
//: return pointer to given row
// No boundary checking here.
T * operator[](unsigned r) { return data[r]; }
//: return pointer to given row
// No boundary checking here.
T const * operator[](unsigned r) const { return data[r]; }
//: Access an element for reading or writing
// There are assert style boundary checks - #define NDEBUG to turn them off.
T & operator()(unsigned r, unsigned c)
{
#if VNL_CONFIG_CHECK_BOUNDS
assert(r<rows()); // Check the row index is valid
assert(c<cols()); // Check the column index is valid
#endif
return this->data[r][c];
}
//: Access an element for reading
// There are assert style boundary checks - #define NDEBUG to turn them off.
T const & operator()(unsigned r, unsigned c) const
{
#if VNL_CONFIG_CHECK_BOUNDS
assert(r<rows()); // Check the row index is valid
assert(c<cols()); // Check the column index is valid
#endif
return this->data[r][c];
}
// ----------------------- Filling and copying -----------------------
//: Sets all elements of matrix to specified value, and returns "*this".
// Complexity $O(r.c)$
// Returning "*this" allows "chaining" two or more operations:
// e.g., to set a matrix to a column-normalized all-elements-equal matrix, say
// \code
// M.fill(1).normalize_columns();
// \endcode
// Returning "*this" also allows passing such a matrix as argument
// to a function f, without having to name the constructed matrix:
// \code
// f(vnl_matrix<double>(5,5,1.0).normalize_columns());
// \endcode
vnl_matrix& fill(T const&);
//: Sets all diagonal elements of matrix to specified value; returns "*this".
// Complexity $O(\min(r,c))$
// Returning "*this" allows "chaining" two or more operations:
// e.g., to set a 3x3 matrix to [5 0 0][0 10 0][0 0 15], just say
// \code
// M.fill_diagonal(5).scale_row(1,2).scale_column(2,3);
// \endcode
// Returning "*this" also allows passing a diagonal-filled matrix as argument
// to a function f, without having to name the constructed matrix:
// \code
// f(vnl_matrix<double>(3,3).fill_diagonal(5));
// \endcode
vnl_matrix& fill_diagonal(T const&);
//: Sets the diagonal elements of this matrix to the specified list of values.
// Returning "*this" allows "chaining" two or more operations: see the
// reasoning (and the examples) in the documentation for method
// fill_diagonal().
vnl_matrix& set_diagonal(vnl_vector<T> const&);
//: Fills (laminates) this matrix with the given data, then returns it.
// We assume that the argument points to a contiguous rows*cols array, stored rowwise.
// No bounds checking on the array.
// Returning "*this" allows "chaining" two or more operations:
// e.g., to fill a square matrix column-wise, fill it rowwise then transpose:
// \code
// M.copy_in(array).inplace_transpose();
// \endcode
// Returning "*this" also allows passing a filled-in matrix as argument
// to a function f, without having to name the constructed matrix:
// \code
// f(vnl_matrix<double>(3,3).copy_in(array));
// \endcode
vnl_matrix& copy_in(T const *);
//: Fills (laminates) this matrix with the given data, then returns it.
// A synonym for copy_in()
vnl_matrix& set(T const *d) { return copy_in(d); }
//: Fills the given array with this matrix.
// We assume that the argument points to a contiguous rows*cols array, stored rowwise.
// No bounds checking on the array.
void copy_out(T *) const;
//: Set all elements to value v
// Complexity $O(r.c)$
vnl_matrix<T>& operator=(T const&v) { fill(v); return *this; }
//: Copies all elements of rhs matrix into lhs matrix.
// Complexity $O(\min(r,c))$
vnl_matrix<T>& operator=(vnl_matrix<T> const&);
// ----------------------- Arithmetic --------------------------------
// note that these functions should not pass scalar as a const&.
// Look what would happen to A /= A(0,0).
//: Add rhs to each element of lhs matrix in situ
vnl_matrix<T>& operator+=(T value);
//: Subtract rhs from each element of lhs matrix in situ
vnl_matrix<T>& operator-=(T value);
//: Scalar multiplication in situ of lhs matrix by rhs
vnl_matrix<T>& operator*=(T value);
//: Scalar division of lhs matrix in situ by rhs
vnl_matrix<T>& operator/=(T value);
//: Add rhs to lhs matrix in situ
vnl_matrix<T>& operator+=(vnl_matrix<T> const&);
//: Subtract rhs from lhs matrix in situ
vnl_matrix<T>& operator-=(vnl_matrix<T> const&);
//: Multiply lhs matrix in situ by rhs
vnl_matrix<T>& operator*=(vnl_matrix<T> const&rhs) { return *this = (*this) * rhs; }
//: Negate all elements of matrix
vnl_matrix<T> operator-() const;
//: Add rhs to each element of lhs matrix and return result in new matrix
vnl_matrix<T> operator+(T const& v) const { return vnl_matrix<T>(*this, v, vnl_tag_add()); }
//: Subtract rhs from each element of lhs matrix and return result in new matrix
vnl_matrix<T> operator-(T const& v) const { return vnl_matrix<T>(*this, v, vnl_tag_sub()); }
//: Scalar multiplication of lhs matrix by rhs and return result in new matrix
vnl_matrix<T> operator*(T const& v) const { return vnl_matrix<T>(*this, v, vnl_tag_mul()); }
//: Scalar division of lhs matrix by rhs and return result in new matrix
vnl_matrix<T> operator/(T const& v) const { return vnl_matrix<T>(*this, v, vnl_tag_div()); }
//: Matrix add rhs to lhs matrix and return result in new matrix
vnl_matrix<T> operator+(vnl_matrix<T> const& rhs) const { return vnl_matrix<T>(*this, rhs, vnl_tag_add()); }
//: Matrix subtract rhs from lhs and return result in new matrix
vnl_matrix<T> operator-(vnl_matrix<T> const& rhs) const { return vnl_matrix<T>(*this, rhs, vnl_tag_sub()); }
//: Matrix multiply lhs by rhs matrix and return result in new matrix
vnl_matrix<T> operator*(vnl_matrix<T> const& rhs) const { return vnl_matrix<T>(*this, rhs, vnl_tag_mul()); }
////--------------------------- Additions ----------------------------
//: Make a new matrix by applying function to each element.
vnl_matrix<T> apply(T (*f)(T)) const;
//: Make a new matrix by applying function to each element.
vnl_matrix<T> apply(T (*f)(T const&)) const;
//: Return transpose
vnl_matrix<T> transpose() const;
//: Return conjugate transpose
vnl_matrix<T> conjugate_transpose() const;
//: Set values of this matrix to those of M, starting at [top,left]
vnl_matrix<T>& update(vnl_matrix<T> const&, unsigned top=0, unsigned left=0);
//: Set the elements of the i'th column to v[i] (No bounds checking)
vnl_matrix& set_column(unsigned i, T const * v);
//: Set the elements of the i'th column to value, then return *this.
vnl_matrix& set_column(unsigned i, T value );
//: Set j-th column to v, then return *this.
vnl_matrix& set_column(unsigned j, vnl_vector<T> const& v);
//: Set columns to those in M, starting at starting_column, then return *this.
vnl_matrix& set_columns(unsigned starting_column, vnl_matrix<T> const& M);
//: Set the elements of the i'th row to v[i] (No bounds checking)
vnl_matrix& set_row(unsigned i, T const * v);
//: Set the elements of the i'th row to value, then return *this.
vnl_matrix& set_row(unsigned i, T value );
//: Set the i-th row
vnl_matrix& set_row(unsigned i, vnl_vector<T> const&);
//: Extract a sub-matrix of size r x c, starting at (top,left)
// Thus it contains elements [top,top+r-1][left,left+c-1]
vnl_matrix<T> extract(unsigned r, unsigned c,
unsigned top=0, unsigned left=0) const;
//: Extract a sub-matrix starting at (top,left)
//
// The output is stored in \a sub_matrix, and it should have the
// required size on entry. Thus the result will contain elements
// [top,top+sub_matrix.rows()-1][left,left+sub_matrix.cols()-1]
void extract ( vnl_matrix<T>& sub_matrix,
unsigned top=0, unsigned left=0) const;
//: Get a vector equal to the given row
vnl_vector<T> get_row(unsigned r) const;
//: Get a vector equal to the given column
vnl_vector<T> get_column(unsigned c) const;
//: Get n rows beginning at rowstart
vnl_matrix<T> get_n_rows(unsigned rowstart, unsigned n) const;
//: Get n columns beginning at colstart
vnl_matrix<T> get_n_columns(unsigned colstart, unsigned n) const;
//: Return a vector with the content of the (main) diagonal
vnl_vector<T> get_diagonal() const;
// ==== mutators ====
//: Sets this matrix to an identity matrix, then returns "*this".
// Returning "*this" allows e.g. passing an identity matrix as argument to
// a function f, without having to name the constructed matrix:
// \code
// f(vnl_matrix<double>(5,5).set_identity());
// \endcode
// Returning "*this" also allows "chaining" two or more operations:
// e.g., to set a 3x3 matrix to [3 0 0][0 2 0][0 0 1], one could say
// \code
// M.set_identity().scale_row(0,3).scale_column(1,2);
// \endcode
// If the matrix is not square, anyhow set main diagonal to 1, the rest to 0.
vnl_matrix& set_identity();
//: Transposes this matrix efficiently, and returns it.
// Returning "*this" allows "chaining" two or more operations:
// e.g., to fill a square matrix column-wise, fill it rowwise then transpose:
// \code
// M.copy_in(array).inplace_transpose();
// \endcode
vnl_matrix& inplace_transpose();
//: Reverses the order of rows, and returns "*this".
// Returning "*this" allows "chaining" two or more operations:
// e.g., to flip both up-down and left-right, one could just say
// \code
// M.flipud().fliplr();
// \endcode
vnl_matrix& flipud();
//: Reverses the order of columns, and returns "*this".
// Returning "*this" allows "chaining" two or more operations:
// e.g., to flip both up-down and left-right, one could just say
// \code
// M.flipud().fliplr();
// \endcode
vnl_matrix& fliplr();
//: Normalizes each row so it is a unit vector, and returns "*this".
// Zero rows are not modified
// Returning "*this" allows "chaining" two or more operations:
// e.g., to set a matrix to a row-normalized all-elements-equal matrix, say
// \code
// M.fill(1).normalize_rows();
// \endcode
// Returning "*this" also allows passing such a matrix as argument
// to a function f, without having to name the constructed matrix:
// \code
// f(vnl_matrix<double>(5,5,1.0).normalize_rows());
// \endcode
vnl_matrix& normalize_rows();
//: Normalizes each column so it is a unit vector, and returns "*this".
// Zero columns are not modified
// Returning "*this" allows "chaining" two or more operations:
// e.g., to set a matrix to a column-normalized all-elements-equal matrix, say
// \code
// M.fill(1).normalize_columns();
// \endcode
// Returning "*this" also allows passing such a matrix as argument
// to a function f, without having to name the constructed matrix:
// \code
// f(vnl_matrix<double>(5,5,1.0).normalize_columns());
// \endcode
vnl_matrix& normalize_columns();
//: Scales elements in given row by a factor T, and returns "*this".
// Returning "*this" allows "chaining" two or more operations:
// e.g., to set a 3x3 matrix to [3 0 0][0 2 0][0 0 1], one could say
// \code
// M.set_identity().scale_row(0,3).scale_column(1,2);
// \endcode
vnl_matrix& scale_row(unsigned row, T value);
//: Scales elements in given column by a factor T, and returns "*this".
// Returning "*this" allows "chaining" two or more operations:
// e.g., to set a 3x3 matrix to [3 0 0][0 2 0][0 0 1], one could say
// \code
// M.set_identity().scale_row(0,3).scale_column(1,2);
// \endcode
vnl_matrix& scale_column(unsigned col, T value);
//: Swap this matrix with that matrix
void swap(vnl_matrix<T> & that);
//: Type def for norms.
typedef typename vnl_c_vector<T>::abs_t abs_t;
//: Return sum of absolute values of elements
abs_t array_one_norm() const { return vnl_c_vector<T>::one_norm(begin(), size()); }
//: Return square root of sum of squared absolute element values
abs_t array_two_norm() const { return vnl_c_vector<T>::two_norm(begin(), size()); }
//: Return largest absolute element value
abs_t array_inf_norm() const { return vnl_c_vector<T>::inf_norm(begin(), size()); }
//: Return sum of absolute values of elements
abs_t absolute_value_sum() const { return array_one_norm(); }
//: Return largest absolute value
abs_t absolute_value_max() const { return array_inf_norm(); }
// $ || M ||_1 := \max_j \sum_i | M_{ij} | $
abs_t operator_one_norm() const;
// $ || M ||_\inf := \max_i \sum_j | M_{ij} | $
abs_t operator_inf_norm() const;
//: Return Frobenius norm of matrix (sqrt of sum of squares of its elements)
abs_t frobenius_norm() const { return vnl_c_vector<T>::two_norm(begin(), size()); }
//: Return Frobenius norm of matrix (sqrt of sum of squares of its elements)
abs_t fro_norm() const { return frobenius_norm(); }
//: Return RMS of all elements
abs_t rms() const { return vnl_c_vector<T>::rms_norm(begin(), size()); }
//: Return minimum value of elements
T min_value() const { return vnl_c_vector<T>::min_value(begin(), size()); }
//: Return maximum value of elements
T max_value() const { return vnl_c_vector<T>::max_value(begin(), size()); }
//: Return location of minimum value of elements
unsigned arg_min() const { return vnl_c_vector<T>::arg_min(begin(), size()); }
//: Return location of maximum value of elements
unsigned arg_max() const { return vnl_c_vector<T>::arg_max(begin(), size()); }
//: Return mean of all matrix elements
T mean() const { return vnl_c_vector<T>::mean(begin(), size()); }
// predicates
//: Return true iff the size is zero.
bool empty() const { return !data || !num_rows || !num_cols; }
//: Return true if all elements equal to identity.
bool is_identity() const;
//: Return true if all elements equal to identity, within given tolerance
bool is_identity(double tol) const;
//: Return true if all elements equal to zero.
bool is_zero() const;
//: Return true if all elements equal to zero, within given tolerance
bool is_zero(double tol) const;
//: Return true if all elements of both matrices are equal, within given tolerance
bool is_equal(vnl_matrix<T> const& rhs, double tol) const;
//: Return true if finite
bool is_finite() const;
//: Return true if matrix contains NaNs
bool has_nans() const;
//: abort if size is not as expected
// This function does or tests nothing if NDEBUG is defined
#ifdef NDEBUG
void assert_size(unsigned, unsigned ) const
{
#else
void assert_size(unsigned r, unsigned c) const
{
assert_size_internal(r, c);
#endif
}
//: abort if matrix contains any INFs or NANs.
// This function does or tests nothing if NDEBUG is defined
void assert_finite() const
{
#ifndef NDEBUG
assert_finite_internal();
#endif
}
////----------------------- Input/Output ----------------------------
//: Read a vnl_matrix from an ascii vcl_istream, automatically determining file size if the input matrix has zero size.
static vnl_matrix<T> read(vcl_istream& s);
// : Read a vnl_matrix from an ascii vcl_istream, automatically determining file size if the input matrix has zero size.
bool read_ascii(vcl_istream& s);
//--------------------------------------------------------------------------------
//: Access the contiguous block storing the elements in the matrix row-wise. O(1).
// 1d array, row-major order.
T const* data_block() const { return data[0]; }
//: Access the contiguous block storing the elements in the matrix row-wise. O(1).
// 1d array, row-major order.
T * data_block() { return data[0]; }
//: Access the 2D array, so that elements can be accessed with array[row][col] directly.
// 2d array, [row][column].
T const* const* data_array() const { return data; }
//: Access the 2D array, so that elements can be accessed with array[row][col] directly.
// 2d array, [row][column].
T * * data_array() { return data; }
typedef T element_type;
//: Iterators
typedef T *iterator;
//: Iterator pointing to start of data
iterator begin() { return data?data[0]:0; }
//: Iterator pointing to element beyond end of data
iterator end() { return data?data[0]+num_rows*num_cols:0; }
//: Const iterators
typedef T const *const_iterator;
//: Iterator pointing to start of data
const_iterator begin() const { return data?data[0]:0; }
//: Iterator pointing to element beyond end of data
const_iterator end() const { return data?data[0]+num_rows*num_cols:0; }
//: Return a reference to this.
// Useful in code which would prefer not to know if its argument
// is a matrix, matrix_ref or a matrix_fixed. Note that it doesn't
// return a matrix_ref, so it's only useful in templates or macros.
vnl_matrix<T> const& as_ref() const { return *this; }
//: Return a reference to this.
vnl_matrix<T>& as_ref() { return *this; }
//--------------------------------------------------------------------------------
//: Return true if *this == rhs
bool operator_eq(vnl_matrix<T> const & rhs) const;
//: Equality operator
bool operator==(vnl_matrix<T> const &that) const { return this->operator_eq(that); }
//: Inequality operator
bool operator!=(vnl_matrix<T> const &that) const { return !this->operator_eq(that); }
//: Print matrix to os in some hopefully sensible format
void print(vcl_ostream& os) const;
//: Make the matrix as if it had been default-constructed.
void clear();
//: Resize to r rows by c columns. Old data lost.
// Returns true if size changed.
bool set_size(unsigned r, unsigned c);
//--------------------------------------------------------------------------------
protected:
unsigned num_rows; // Number of rows
unsigned num_cols; // Number of columns
T** data; // Pointer to the vnl_matrix
#if VCL_HAS_SLICED_DESTRUCTOR_BUG
// Since this bug exists, we need a flag that can be set during
// construction to tell our destructor whether we own data.
char vnl_matrix_own_data;
#endif
void assert_size_internal(unsigned r, unsigned c) const;
void assert_finite_internal() const;
//: Delete data
void destroy();
#if VCL_NEED_FRIEND_FOR_TEMPLATE_OVERLOAD
# define v vnl_vector<T>
# define m vnl_matrix<T>
friend m operator+ VCL_NULL_TMPL_ARGS (T const&, m const&);
friend m operator- VCL_NULL_TMPL_ARGS (T const&, m const&);
friend m operator* VCL_NULL_TMPL_ARGS (T const&, m const&);
friend m element_product VCL_NULL_TMPL_ARGS (m const&, m const&);
friend m element_quotient VCL_NULL_TMPL_ARGS (m const&, m const&);
friend T dot_product VCL_NULL_TMPL_ARGS (m const&, m const&);
friend T inner_product VCL_NULL_TMPL_ARGS (m const&, m const&);
friend T cos_angle VCL_NULL_TMPL_ARGS (m const&, m const&);
friend vcl_ostream& operator<< VCL_NULL_TMPL_ARGS (vcl_ostream&, m const&);
friend vcl_istream& operator>> VCL_NULL_TMPL_ARGS (vcl_istream&, m&);
# undef v
# undef m
#endif
// inline function template instantiation hack for gcc 2.97 -- fsm
static void inline_function_tickler();
};
// Definitions of inline functions.
//: Returns the value of the element at specified row and column. O(1).
// Checks for valid range of indices.
template<class T>
inline T vnl_matrix<T>::get(unsigned row, unsigned column) const
{
#ifdef ERROR_CHECKING
if (row >= this->num_rows) // If invalid size specified
vnl_error_matrix_row_index("get", row); // Raise exception
if (column >= this->num_cols) // If invalid size specified
vnl_error_matrix_col_index("get", column); // Raise exception
#endif
return this->data[row][column];
}
//: Puts value into element at specified row and column. O(1).
// Checks for valid range of indices.
template<class T>
inline void vnl_matrix<T>::put(unsigned row, unsigned column, T const& value)
{
#ifdef ERROR_CHECKING
if (row >= this->num_rows) // If invalid size specified
vnl_error_matrix_row_index("put", row); // Raise exception
if (column >= this->num_cols) // If invalid size specified
vnl_error_matrix_col_index("put", column); // Raise exception
#endif
this->data[row][column] = value; // Assign data value
}
// non-member arithmetical operators.
//:
// \relatesalso vnl_matrix
template<class T>
inline vnl_matrix<T> operator*(T const& value, vnl_matrix<T> const& m)
{
return vnl_matrix<T>(m, value, vnl_tag_mul());
}
//:
// \relatesalso vnl_matrix
template<class T>
inline vnl_matrix<T> operator+(T const& value, vnl_matrix<T> const& m)
{
return vnl_matrix<T>(m, value, vnl_tag_add());
}
//: Swap two matrices
// \relatesalso vnl_matrix
template<class T>
inline void swap(vnl_matrix<T> &A, vnl_matrix<T> &B) { A.swap(B); }
#endif // vnl_matrix_h_
|