/usr/include/libint2/diis.h is in libint2-dev 2.1.0~beta2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 | /*
* This file is a part of Libint.
* Copyright (C) 2004-2014 Edward F. Valeev
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Library General Public License, version 2,
* as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this program. If not, see http://www.gnu.org/licenses/.
*
*/
#ifndef _libint2_src_lib_libint_diis_h_
#define _libint2_src_lib_libint_diis_h_
#if __cplusplus <= 199711L
# error " Libint2 C++ API requires C++11 support"
#endif
#include <deque>
namespace libint2 {
namespace diis {
template <typename D>
struct traits;
/*
template <typename D>
typename traits<D>::element_type
dot_product(const D& d1, const D& d2);
template <typename D>
void
zero(D& d);
template <typename D, typename Scalar>
void
axpy(const D& y, Scalar a, const D& x);
*/
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
struct traits<Eigen::Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols >> {
typedef Eigen::Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > D;
typedef typename D::Scalar element_type;
};
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
typename traits<Eigen::Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols >>::element_type
dot_product(const Eigen::Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols >& d1,
const Eigen::Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols >& d2) {
return d1.cwiseProduct(d2).sum();
}
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
void
zero(Eigen::Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols >& d) {
d.setZero(d.rows(), d.cols());
}
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols, typename Scalar>
void
axpy(Eigen::Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols >& y,
Scalar a,
const Eigen::Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols >& x) {
y += a*x;
}
}
/// DIIS (``direct inversion of iterative subspace'') extrapolation
/// The DIIS class provides DIIS extrapolation to an iterative solver of
/// (systems of) linear or nonlinear equations of the \f$ f(x) = 0 \f$ form,
/// where \f$ f(x) \f$ is a (non-linear) function of \f$ x \f$ (in general,
/// \f$ x \f$ is a set of numeric values). Such equations are usually solved
/// iteratively as follows:
/// \li given a current guess at the solution, \f$ x_i \f$, evaluate the error
/// (``residual'') \f$ e_i = f(x_i) \f$ (NOTE that the dimension of
/// \f$ x \f$ and \f$ e \f$ do not need to coincide);
/// \li use the error to compute an updated guess \f$ x_{i+1} = x_i + g(e_i) \f$;
/// \li proceed until a norm of the error is less than the target precision
/// \f$ \epsilon \f$. Another convergence criterion may include
/// \f$ ||x_{i+1} - x_i|| < \epsilon \f$ .
/// \\
/// For example, in the Hartree-Fock method in the density form, one could
/// choose \f$ x \equiv \mathbf{P} \f$, the one-electron density matrix, and
/// \f$ f(\mathbf{P}) \equiv [\mathbf{F}, \mathbf{P}] \f$ , where
/// \f$ \mathbf{F} = \mathbf{F}(\mathbf{P}) \f$ is the Fock matrix, a linear
/// function of the density. Because \f$ \mathbf{F} \f$ is a linear function
/// of the density and DIIS uses a linear extrapolation, it is possible to
/// just extrapolate the Fock matrix itself, i.e. \f$ x \equiv \mathbf{F} \f$
/// and \f$ f(\mathbf{F}) \equiv [\mathbf{F}, \mathbf{P}] \f$ .
/// \\
/// Similarly, in the Hartree-Fock method in the molecular orbital
/// representation, DIIS is used to extrapolate the Fock matrix, i.e.
/// \f$ x \equiv \mathbf{F} \f$ and \f$ f(\mathbf{F}) \equiv \{ F_i^a \} \f$ ,
/// where \f$ i \f$ and \f$ a \f$ are the occupied and unoccupied orbitals,
/// respectively.
/// \\
/// Here's a short description of the DIIS method. Given a set of solution
/// guess vectors \f$ \{ x_k \}, k=0..i \f$ and the corresponding error
/// vectors \f$ \{ e_k \} \f$ DIIS tries to find a linear combination of
/// \f$ x \f$ that would minimize the error by solving a simple linear system
/// set up from the set of errors. The solution is a vector of coefficients
/// \f$ \{ C_k \} \f$ that can be used to obtain an improved \f$ x \f$:
/// \f$ x_{\mathrm{extrap},i+1} = \sum\limits_{k=0}^i C_{k,i} x_{k} \f$
/// A more complicated version of DIIS introduces mixing:
/// \f$ x_{\mathrm{extrap},i+1} = \sum\limits_{k=0}^i C_{k,i} ( (1-f) x_{k} + f x_{extrap,k} ) \f$
/// Note that the mixing is not used in the first iteration.
/// \\
/// The original DIIS reference: P. Pulay, Chem. Phys. Lett. 73, 393 (1980).
///
/// \tparam D type of \c x
template <typename D>
class DIIS {
public:
typedef typename diis::traits<D>::element_type value_type;
/// Constructor
/// \param strt The DIIS extrapolation will begin on the iteration given
/// by this integer (default = 1).
/// \param ndi This integer maximum number of data sets to retain (default
/// = 5).
/// \param dmp This nonnegative floating point number is used to dampen
/// the DIIS extrapolation (default = 0.0).
/// \param ngr The number of iterations in a DIIS group. DIIS
/// extrapolation is only used for the first \c ngrdiis of these
/// iterations (default = 1). If \c ngr is 1 and \c ngrdiis is
/// greater than 0, then DIIS will be used on all iterations after and
/// including the start iteration.
/// \param ngrdiis The number of DIIS extrapolations to do at the
/// beginning of an iteration group. See the documentation for \c ngr
/// (default = 1).
/// \param mf This real number in [0,1] is used to dampen the DIIS
/// extrapolation by mixing the input data with the output data for each
/// iteration (default = 0.0), which performs no mixing. The approach
/// described in Kerker, Phys. Rev. B, 23, p3082, 1981.
DIIS(unsigned int strt=1,
unsigned int ndi=5,
value_type dmp =0,
unsigned int ngr=1,
unsigned int ngrdiis=1,
value_type mf=0) :
error_(0), errorset_(false),
start(strt), ndiis(ndi),
iter(0), ngroup(ngr),
ngroupdiis(ngr),
damping_factor(dmp),
mixing_fraction(mf)
{
init();
}
~DIIS() {
x_.clear();
errors_.clear();
x_extrap_.clear();
}
/// \param[in,out] x On input, the most recent solution guess; on output,
/// the extrapolated guess
/// \param[in,out] error On input, the most recent error; on output, the
/// if \c extrapolate_error \c == \c true will be the extrapolated
/// error, otherwise the value unchanged
/// \param extrapolate_error whether to extrapolate the error (default =
/// false).
void extrapolate(D& x,
D& error,
bool extrapolate_error = false)
{
using namespace ::libint2::diis;
const value_type zero_determinant = std::numeric_limits<value_type>::epsilon();
const value_type zero_norm = 1.0e-10;
iter++;
const bool do_mixing = (mixing_fraction != 0.0);
const value_type scale = 1.0 + damping_factor;
// if have ndiis vectors
if (errors_.size() == ndiis) { // holding max # of vectors already? drop the least recent {x, error} pair
x_.pop_front();
errors_.pop_front();
if (not x_extrap_.empty()) x_extrap_.pop_front();
EigenMatrixX Bcrop = B_.bottomRightCorner(ndiis-1,ndiis-1);
Bcrop.conservativeResize(ndiis,ndiis);
B_ = Bcrop;
}
// push {x, error} to the set
x_.push_back(x);
errors_.push_back(error);
const unsigned int nvec = errors_.size();
assert(x_.size() == errors_.size());
// and compute the most recent elements of B, B(i,j) = <ei|ej>
for (unsigned int i=0; i < nvec-1; i++)
B_(i,nvec-1) = B_(nvec-1,i) = dot_product(errors_[i], errors_[nvec-1]);
B_(nvec-1,nvec-1) = dot_product(errors_[nvec-1], errors_[nvec-1]);
if (iter == 1) { // the first iteration
if (not x_extrap_.empty() && do_mixing) {
zero(x);
axpy(x, (1.0-mixing_fraction), x_[0]);
axpy(x, mixing_fraction, x_extrap_[0]);
}
}
else if (iter > start && (((iter - start) % ngroup) < ngroupdiis)) { // not the first iteration and need to extrapolate?
EigenVectorX c;
value_type absdetA;
unsigned int nskip = 0; // how many oldest vectors to skip for the sake of conditioning?
// try zero
// skip oldest vectors until found a numerically stable system
do {
const unsigned int rank = nvec - nskip + 1; // size of matrix A
// set up the DIIS linear system: A c = rhs
EigenMatrixX A(rank, rank);
A.col(0).setConstant(-1.0);
A.row(0).setConstant(-1.0);
A(0,0) = 0.0;
EigenVectorX rhs = EigenVectorX::Zero(rank);
rhs[0] = -1.0;
value_type norm = 1.0;
if (B_(nskip,nskip) > zero_norm)
norm = 1.0/B_(nskip,nskip);
A.block(1, 1, rank-1, rank-1) = B_.block(nskip, nskip, rank-1, rank-1) * norm;
A.diagonal() *= scale;
//for (unsigned int i=1; i < rank ; i++) {
// for (unsigned int j=1; j <= i ; j++) {
// A(i, j) = A(j, i) = B_(i+nskip-1, j+nskip-1) * norm;
// if (i==j) A(i, j) *= scale;
// }
//}
#if 0
std::cout << "DIIS: iter=" << iter << " nskip=" << nskip << " nvec=" << nvec << std::endl;
std::cout << "DIIS: B=" << B_ << std::endl;
std::cout << "DIIS: A=" << A << std::endl;
std::cout << "DIIS: rhs=" << rhs << std::endl;
#endif
// finally, solve the DIIS linear system
Eigen::ColPivHouseholderQR<EigenMatrixX> A_QR = A.colPivHouseholderQr();
c = A_QR.solve(rhs);
absdetA = A_QR.absDeterminant();
//std::cout << "DIIS: |A|=" << absdetA << " sol=" << c << std::endl;
++nskip;
} while (absdetA < zero_determinant && nskip < nvec); // while (system is poorly conditioned)
// failed?
if (absdetA < zero_determinant) {
std::ostringstream oss;
oss << "DIIS::extrapolate: poorly-conditioned system, |A| = " << absdetA;
throw std::domain_error(oss.str());
}
--nskip; // undo the last ++ :-(
{
zero(x);
for (unsigned int k=nskip, kk=1; k < nvec; ++k, ++kk) {
if (not do_mixing || x_extrap_.empty()) {
//std::cout << "contrib " << k << " c=" << c[kk] << ":" << std::endl << x_[k] << std::endl;
axpy(x, c[kk], x_[k]);
if (extrapolate_error)
axpy(error, c[kk], errors_[k]);
} else {
axpy(x, c[kk] * (1.0 - mixing_fraction), x_[k]);
axpy(x, c[kk] * mixing_fraction, x_extrap_[k]);
}
}
}
} // do DIIS
// only need to keep extrapolated x if doing mixing
if (do_mixing) x_extrap_.push_back(x);
}
/// calling this function forces the extrapolation to start upon next call
/// to \c extrapolate() even if this object was initialized with start
/// value greater than the current iteration index.
void start_extrapolation() {
if (start > iter) start = iter+1;
}
void reinitialize(const D* data = 0) {
iter=0;
if (data) {
const bool do_mixing = (mixing_fraction != 0.0);
if (do_mixing) x_extrap_.push_front(*data);
}
}
private:
value_type error_;
bool errorset_;
unsigned int start;
unsigned int ndiis;
unsigned int iter;
unsigned int ngroup;
unsigned int ngroupdiis;
value_type damping_factor;
value_type mixing_fraction;
typedef Eigen::Matrix<value_type, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor> EigenMatrixX;
typedef Eigen::Matrix<value_type, Eigen::Dynamic, 1> EigenVectorX;
EigenMatrixX B_; //!< B(i,j) = <ei|ej>
std::deque<D> x_; //!< set of most recent x given as input (i.e. not exrapolated)
std::deque<D> errors_; //!< set of most recent errors
std::deque<D> x_extrap_; //!< set of most recent extrapolated x
void set_error(value_type e) { error_ = e; errorset_ = true; }
value_type error() { return error_; }
void init() {
iter = 0;
B_ = EigenMatrixX::Zero(ndiis,ndiis);
x_.clear();
errors_.clear();
x_extrap_.clear();
//x_.resize(ndiis);
//errors_.resize(ndiis);
// x_extrap_ is bigger than the other because
// it must hold data associated with the next iteration
//x_extrap_.resize(diis+1);
}
}; // class DIIS
} // namespace libint2
#include <libint2/engine.h>
#endif /* _libint2_src_lib_libint_diis_h_ */
|