This file is indexed.

/usr/include/libint2/diis.h is in libint2-dev 2.1.0~beta2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
/*
 *  This file is a part of Libint.
 *  Copyright (C) 2004-2014 Edward F. Valeev
 *
 *  This program is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU Library General Public License, version 2,
 *  as published by the Free Software Foundation.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU Library General Public License
 *  along with this program.  If not, see http://www.gnu.org/licenses/.
 *
 */

#ifndef _libint2_src_lib_libint_diis_h_
#define _libint2_src_lib_libint_diis_h_

#if __cplusplus <= 199711L
# error " Libint2 C++ API requires C++11 support"
#endif

#include <deque>

namespace libint2 {

  namespace diis {

    template <typename D>
    struct traits;

    /*
    template <typename D>
    typename traits<D>::element_type
    dot_product(const D& d1, const D& d2);

    template <typename D>
    void
    zero(D& d);

    template <typename D, typename Scalar>
    void
    axpy(const D& y, Scalar a, const D& x);
    */

    template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
    struct traits<Eigen::Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols >> {
        typedef Eigen::Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > D;
        typedef typename D::Scalar element_type;
    };

    template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
    typename traits<Eigen::Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols >>::element_type
    dot_product(const Eigen::Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols >& d1,
                const Eigen::Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols >& d2) {
      return d1.cwiseProduct(d2).sum();
    }

    template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
    void
    zero(Eigen::Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols >& d) {
      d.setZero(d.rows(), d.cols());
    }

    template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols, typename Scalar>
    void
    axpy(Eigen::Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols >& y,
         Scalar a,
         const Eigen::Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols >& x) {
      y += a*x;
    }

  }

  /// DIIS (``direct inversion of iterative subspace'') extrapolation

  /// The DIIS class provides DIIS extrapolation to an iterative solver of
  /// (systems of) linear or nonlinear equations of the \f$ f(x) = 0 \f$ form,
  /// where \f$ f(x) \f$ is a (non-linear) function of \f$ x \f$ (in general,
  /// \f$ x \f$ is a set of numeric values). Such equations are usually solved
  /// iteratively as follows:
  /// \li given a current guess at the solution, \f$ x_i \f$, evaluate the error
  ///     (``residual'') \f$ e_i = f(x_i) \f$ (NOTE that the dimension of
  ///     \f$ x \f$ and \f$ e \f$ do not need to coincide);
  /// \li use the error to compute an updated guess \f$ x_{i+1} = x_i + g(e_i) \f$;
  /// \li proceed until a norm of the error is less than the target precision
  ///     \f$ \epsilon \f$. Another convergence criterion may include
  ///     \f$ ||x_{i+1} - x_i|| < \epsilon \f$ .
  /// \\
  /// For example, in the Hartree-Fock method in the density form, one could
  /// choose \f$ x \equiv \mathbf{P} \f$, the one-electron density matrix, and
  /// \f$ f(\mathbf{P}) \equiv [\mathbf{F}, \mathbf{P}] \f$ , where
  /// \f$ \mathbf{F} = \mathbf{F}(\mathbf{P}) \f$ is the Fock matrix, a linear
  /// function of the density. Because \f$ \mathbf{F} \f$ is a linear function
  /// of the density and DIIS uses a linear extrapolation, it is possible to
  /// just extrapolate the Fock matrix itself, i.e. \f$ x \equiv \mathbf{F} \f$
  /// and \f$ f(\mathbf{F}) \equiv [\mathbf{F}, \mathbf{P}] \f$ .
  /// \\
  /// Similarly, in the Hartree-Fock method in the molecular orbital
  /// representation, DIIS is used to extrapolate the Fock matrix, i.e.
  /// \f$ x \equiv \mathbf{F} \f$ and \f$ f(\mathbf{F}) \equiv \{ F_i^a \} \f$ ,
  /// where \f$ i \f$ and \f$ a \f$ are the occupied and unoccupied orbitals,
  /// respectively.
  /// \\
  /// Here's a short description of the DIIS method. Given a set of solution
  /// guess vectors \f$ \{ x_k \}, k=0..i \f$ and the corresponding error
  /// vectors \f$ \{ e_k \} \f$ DIIS tries to find a linear combination of
  /// \f$ x \f$ that would minimize the error by solving a simple linear system
  /// set up from the set of errors. The solution is a vector of coefficients
  /// \f$ \{ C_k \} \f$ that can be used to obtain an improved \f$ x \f$:
  /// \f$ x_{\mathrm{extrap},i+1} = \sum\limits_{k=0}^i C_{k,i} x_{k} \f$
  /// A more complicated version of DIIS introduces mixing:
  /// \f$ x_{\mathrm{extrap},i+1} = \sum\limits_{k=0}^i C_{k,i} ( (1-f) x_{k} + f x_{extrap,k} ) \f$
  /// Note that the mixing is not used in the first iteration.
  /// \\
  /// The original DIIS reference: P. Pulay, Chem. Phys. Lett. 73, 393 (1980).
  ///
  /// \tparam D type of \c x
  template <typename D>
  class DIIS {
    public:
      typedef typename diis::traits<D>::element_type value_type;

      /// Constructor

      /// \param strt The DIIS extrapolation will begin on the iteration given
      ///   by this integer (default = 1).
      /// \param ndi This integer maximum number of data sets to retain (default
      ///   = 5).
      /// \param dmp This nonnegative floating point number is used to dampen
      ///   the DIIS extrapolation (default = 0.0).
      /// \param ngr The number of iterations in a DIIS group. DIIS
      ///   extrapolation is only used for the first \c ngrdiis of these
      ///   iterations (default = 1). If \c ngr is 1 and \c ngrdiis is
      ///   greater than 0, then DIIS will be used on all iterations after and
      ///   including the start iteration.
      /// \param ngrdiis The number of DIIS extrapolations to do at the
      ///   beginning of an iteration group.  See the documentation for \c ngr
      ///   (default = 1).
      /// \param mf This real number in [0,1] is used to dampen the DIIS
      ///   extrapolation by mixing the input data with the output data for each
      ///   iteration (default = 0.0), which performs no mixing. The approach
      ///   described in Kerker, Phys. Rev. B, 23, p3082, 1981.
      DIIS(unsigned int strt=1,
           unsigned int ndi=5,
           value_type dmp =0,
           unsigned int ngr=1,
           unsigned int ngrdiis=1,
           value_type mf=0) :
             error_(0), errorset_(false),
             start(strt), ndiis(ndi),
             iter(0), ngroup(ngr),
             ngroupdiis(ngr),
             damping_factor(dmp),
             mixing_fraction(mf)
           {
            init();
           }
      ~DIIS() {
        x_.clear();
        errors_.clear();
        x_extrap_.clear();
      }

      /// \param[in,out] x On input, the most recent solution guess; on output,
      ///   the extrapolated guess
      /// \param[in,out] error On input, the most recent error; on output, the
      ///   if \c extrapolate_error \c == \c true will be the extrapolated
      ///   error, otherwise the value unchanged
      /// \param extrapolate_error whether to extrapolate the error (default =
      ///   false).
      void extrapolate(D& x,
                       D& error,
                       bool extrapolate_error = false)
      {
        using namespace ::libint2::diis;

        const value_type zero_determinant = std::numeric_limits<value_type>::epsilon();
        const value_type zero_norm = 1.0e-10;

        iter++;

        const bool do_mixing = (mixing_fraction != 0.0);
        const value_type scale = 1.0 + damping_factor;

        // if have ndiis vectors
        if (errors_.size() == ndiis) { // holding max # of vectors already? drop the least recent {x, error} pair
          x_.pop_front();
          errors_.pop_front();
          if (not x_extrap_.empty()) x_extrap_.pop_front();
          EigenMatrixX Bcrop = B_.bottomRightCorner(ndiis-1,ndiis-1);
          Bcrop.conservativeResize(ndiis,ndiis);
          B_ = Bcrop;
        }

        // push {x, error} to the set
        x_.push_back(x);
        errors_.push_back(error);
        const unsigned int nvec = errors_.size();
        assert(x_.size() == errors_.size());

        // and compute the most recent elements of B, B(i,j) = <ei|ej>
        for (unsigned int i=0; i < nvec-1; i++)
          B_(i,nvec-1) = B_(nvec-1,i) = dot_product(errors_[i], errors_[nvec-1]);
        B_(nvec-1,nvec-1) = dot_product(errors_[nvec-1], errors_[nvec-1]);

        if (iter == 1) { // the first iteration
          if (not x_extrap_.empty() && do_mixing) {
            zero(x);
            axpy(x, (1.0-mixing_fraction), x_[0]);
            axpy(x, mixing_fraction, x_extrap_[0]);
          }
        }
        else if (iter > start && (((iter - start) % ngroup) < ngroupdiis)) { // not the first iteration and need to extrapolate?

          EigenVectorX c;

          value_type absdetA;
          unsigned int nskip = 0; // how many oldest vectors to skip for the sake of conditioning?
                                        // try zero
          // skip oldest vectors until found a numerically stable system
          do {

            const unsigned int rank = nvec - nskip + 1; // size of matrix A

            // set up the DIIS linear system: A c = rhs
            EigenMatrixX A(rank, rank);
            A.col(0).setConstant(-1.0);
            A.row(0).setConstant(-1.0);
            A(0,0) = 0.0;
            EigenVectorX rhs = EigenVectorX::Zero(rank);
            rhs[0] = -1.0;

            value_type norm = 1.0;
            if (B_(nskip,nskip) > zero_norm)
              norm = 1.0/B_(nskip,nskip);

            A.block(1, 1, rank-1, rank-1) = B_.block(nskip, nskip, rank-1, rank-1) * norm;
            A.diagonal() *= scale;
            //for (unsigned int i=1; i < rank ; i++) {
            //  for (unsigned int j=1; j <= i ; j++) {
            //    A(i, j) = A(j, i) = B_(i+nskip-1, j+nskip-1) * norm;
            //    if (i==j) A(i, j) *= scale;
            //  }
            //}

#if 0
            std::cout << "DIIS: iter=" << iter << " nskip=" << nskip << " nvec=" << nvec << std::endl;
            std::cout << "DIIS: B=" << B_ << std::endl;
            std::cout << "DIIS: A=" << A << std::endl;
            std::cout << "DIIS: rhs=" << rhs << std::endl;
#endif

            // finally, solve the DIIS linear system
            Eigen::ColPivHouseholderQR<EigenMatrixX> A_QR = A.colPivHouseholderQr();
            c = A_QR.solve(rhs);
            absdetA = A_QR.absDeterminant();

            //std::cout << "DIIS: |A|=" << absdetA << " sol=" << c << std::endl;

            ++nskip;

          } while (absdetA < zero_determinant && nskip < nvec); // while (system is poorly conditioned)

          // failed?
          if (absdetA < zero_determinant) {
            std::ostringstream oss;
            oss << "DIIS::extrapolate: poorly-conditioned system, |A| = " << absdetA;
            throw std::domain_error(oss.str());
          }
          --nskip; // undo the last ++ :-(

          {

            zero(x);
            for (unsigned int k=nskip, kk=1; k < nvec; ++k, ++kk) {
              if (not do_mixing || x_extrap_.empty()) {
                //std::cout << "contrib " << k << " c=" << c[kk] << ":" << std::endl << x_[k] << std::endl;
                axpy(x, c[kk], x_[k]);
                if (extrapolate_error)
                  axpy(error, c[kk], errors_[k]);
              } else {
                axpy(x, c[kk] * (1.0 - mixing_fraction), x_[k]);
                axpy(x, c[kk] * mixing_fraction, x_extrap_[k]);
              }
            }
          }
        } // do DIIS

        // only need to keep extrapolated x if doing mixing
        if (do_mixing) x_extrap_.push_back(x);
      }

      /// calling this function forces the extrapolation to start upon next call
      /// to \c extrapolate() even if this object was initialized with start
      /// value greater than the current iteration index.
      void start_extrapolation() {
        if (start > iter) start = iter+1;
      }

      void reinitialize(const D* data = 0) {
        iter=0;
        if (data) {
          const bool do_mixing = (mixing_fraction != 0.0);
          if (do_mixing) x_extrap_.push_front(*data);
        }
      }

    private:
      value_type error_;
      bool errorset_;

      unsigned int start;
      unsigned int ndiis;
      unsigned int iter;
      unsigned int ngroup;
      unsigned int ngroupdiis;
      value_type damping_factor;
      value_type mixing_fraction;

      typedef Eigen::Matrix<value_type, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor> EigenMatrixX;
      typedef Eigen::Matrix<value_type, Eigen::Dynamic, 1> EigenVectorX;

      EigenMatrixX B_; //!< B(i,j) = <ei|ej>

      std::deque<D> x_; //!< set of most recent x given as input (i.e. not exrapolated)
      std::deque<D> errors_; //!< set of most recent errors
      std::deque<D> x_extrap_; //!< set of most recent extrapolated x

      void set_error(value_type e) { error_ = e; errorset_ = true; }
      value_type error() { return error_; }

      void init() {
        iter = 0;

        B_ = EigenMatrixX::Zero(ndiis,ndiis);

        x_.clear();
        errors_.clear();
        x_extrap_.clear();
        //x_.resize(ndiis);
        //errors_.resize(ndiis);
        // x_extrap_ is bigger than the other because
        // it must hold data associated with the next iteration
        //x_extrap_.resize(diis+1);
      }

  }; // class DIIS

} // namespace libint2

#include <libint2/engine.h>

#endif /* _libint2_src_lib_libint_diis_h_ */