/usr/include/libint2/engine.h is in libint2-dev 2.1.0~beta2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 | /*
* This file is a part of Libint.
* Copyright (C) 2004-2014 Edward F. Valeev
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Library General Public License, version 2,
* as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this program. If not, see http://www.gnu.org/licenses/.
*
*/
#ifndef _libint2_src_lib_libint_engine_h_
#define _libint2_src_lib_libint_engine_h_
#if __cplusplus <= 199711L
# error "The simple Libint API requires C++11 support"
#endif
#include <iostream>
#include <array>
#include <vector>
#include <map>
#include <libint2.h>
#include <libint2/boys.h>
#include <libint2/shell.h>
#include <libint2/timer.h>
#include <libint2/solidharmonics.h>
#include <libint2/any.h>
#include <Eigen/Core>
// the engine will be profiled by default if library was configured with --enable-profile
#ifdef LIBINT2_PROFILE
# define LIBINT2_ENGINE_TIMERS
// uncomment if want to profile each integral class
# define LIBINT2_ENGINE_PROFILE_CLASS
#endif
// uncomment if want to profile the engine even if library was configured without --enable-profile
//# define LIBINT2_ENGINE_TIMERS
#ifdef __GNUC__
#define DEPRECATED __attribute__((deprecated))
#elif defined(_MSC_VER)
#define DEPRECATED __declspec(deprecated)
#else
#pragma message("WARNING: You need to implement DEPRECATED for this compiler")
#define DEPRECATED
#endif
namespace libint2 {
#if defined(LIBINT2_SUPPORT_ONEBODY)
/**
* OneBodyEngine computes integrals of operators (or operator sets) given by OneBodyOperator::operator_type
*/
class OneBodyEngine {
private:
typedef struct {} empty_pod;
public:
/// types of operators (operator sets) supported by OneBodyEngine
enum operator_type {
overlap, //!< overlap
kinetic, //!< electronic kinetic energy, i.e. \f$ -\frac{1}{2} \Nabla^2 \f$
nuclear, //!< Coulomb potential due to point charges
emultipole1, //!< overlap + (Cartesian) electric dipole moment, \f$ x_O, y_O, z_O \f$, where \f$ x_O \equiv x - O_x \f$ is relative to origin \f$ \vec{O} \f$
emultipole2, //!< emultipole1 + (Cartesian) electric quadrupole moment, \f$ x^2, xy, xz, y^2, yz, z^2 \f$
_invalid
};
/// alias to operator_type for backward compatibility to pre-05/13/2015 code
/// \deprecated use operator_type instead
DEPRECATED typedef operator_type integral_type;
/// describes operator sets given by OneBodyOperator
/// \note needs to be specialized for some operator types
template <operator_type O> struct operator_traits;
typedef libint2::FmEval_Taylor<real_t, 7> coulomb_core_eval_t;
/// creates a default (unusable) OneBodyEngine; to be used as placeholder for copying a usable engine
OneBodyEngine() : type_(_invalid), primdata_(), lmax_(-1) {}
/// Constructs a (usable) OneBodyEngine
/// \param max_nprim the maximum number of primitives per contracted Gaussian shell
/// \param max_l the maximum angular momentum of Gaussian shell
/// \param deriv_level if not 0, will compute geometric derivatives of Gaussian integrals of order \c deriv_level
/// \param params a value of type OneBodyEngine::operator_traits<type>::oper_params_type specifying the parameters of
/// the operator set, e.g. position and magnitude of the charges creating the Coulomb potential
/// for type == nuclear. For most values of type this is not needed.
/// \sa OneBodyEngine::operator_traits
/// \warning currently derivative integrals are not supported
template <typename Params = empty_pod>
OneBodyEngine(operator_type type,
size_t max_nprim,
int max_l,
int deriv_order = 0,
Params params = empty_pod()) :
type_(type),
primdata_(max_nprim * max_nprim),
lmax_(max_l),
deriv_order_(deriv_order),
params_(enforce_params_type(type,params)),
fm_eval_(type == nuclear ? coulomb_core_eval_t::instance(2*max_l+deriv_order, 1e-25) : 0)
{
initialize();
}
/// move constructor
OneBodyEngine(OneBodyEngine&& other) = default;
/// (deep) copy constructor
OneBodyEngine(const OneBodyEngine& other) :
primdata_(other.primdata_.size()),
lmax_(other.lmax_),
deriv_order_(other.deriv_order_),
params_(other.params_),
fm_eval_(other.fm_eval_) {
initialize();
}
~OneBodyEngine() {
finalize();
}
/// move assignment
OneBodyEngine& operator=(OneBodyEngine&& other) = default;
/// (deep) copy assignment
OneBodyEngine& operator=(const OneBodyEngine& other) {
primdata_.resize(other.primdata_.size());
lmax_ = other.lmax_;
deriv_order_ = other.deriv_order_;
params_ = other.params_;
fm_eval_ = other.fm_eval_;
initialize();
return *this;
}
/// resets operator parameters; this may be useful if need to compute Coulomb potential
/// integrals over batches of charges for the sake of parallelism.
template <typename Params>
void set_params(const Params& params) {
params_ = params;
}
/// alias to set_params() for backward compatibility with pre-05/13/2015 code
/// \deprecated use set_params() instead
template <typename Params>
DEPRECATED void set_q(const Params& params) {
set_params(params);
}
/// reports the number of shell sets that each call to compute() produces.
/// this depends on the order of geometrical derivatives requested and
/// on the operator set. \sa compute()
/// \note need to specialize for some operator types
unsigned int nshellsets() const {
auto nderivs = [](unsigned int deriv_order) -> unsigned int {
unsigned int result = 1;
for(unsigned int d=0; d!=deriv_order; ++d) {
result *= (6 + d); result /= (1 + d);
}
return result;
};
return nopers() * nderivs(deriv_order_);
}
/// computes shell set of integrals
/// \note result is stored in row-major order
const real_t* compute(const libint2::Shell& s1,
const libint2::Shell& s2) {
// can only handle 1 contraction at a time
assert(s1.ncontr() == 1 && s2.ncontr() == 1);
// derivatives not supported for now
assert(deriv_order_ == 0);
const auto l1 = s1.contr[0].l;
const auto l2 = s2.contr[0].l;
// if want nuclear, make sure there is at least one nucleus .. otherwise the user likely forgot to call set_params
if (type_ == nuclear and nparams() == 0)
throw std::runtime_error("libint2::OneBodyEngine<nuclear>, but no charges found; forgot to call set_params()?");
const auto n1 = s1.size();
const auto n2 = s2.size();
const auto n12 = n1 * n2;
const auto ncart1 = s1.cartesian_size();
const auto ncart2 = s2.cartesian_size();
const auto ncart12 = ncart1 * ncart2;
// assert # of primitive pairs
const auto nprim1 = s1.nprim();
const auto nprim2 = s2.nprim();
const auto nprimpairs = nprim1 * nprim2;
assert(nprimpairs <= primdata_.size());
// how many shell sets will I get?
auto num_shellsets = nshellsets();
// Coulomb ints are computed 1 charge at a time, contributions are accumulated in scratch_ (unless la==lb==0)
const bool accumulate_ints_in_scratch = (type_ == nuclear);
auto nparam_sets = nparams();
// adjust max angular momentum, if needed
const auto lmax = std::max(l1, l2);
assert (lmax <= lmax_);
if (lmax == 0) // (s|s) ints will be accumulated in the first element of stack
primdata_[0].stack[0] = 0;
else if (accumulate_ints_in_scratch)
memset(static_cast<void*>(&scratch_[0]), 0, sizeof(real_t)*ncart12);
// loop over accumulation batches
for(auto pset=0u; pset!=nparam_sets; ++pset) {
if (type_!=nuclear) assert(nparam_sets == 1);
auto p12 = 0;
for(auto p1=0; p1!=nprim1; ++p1) {
for(auto p2=0; p2!=nprim2; ++p2, ++p12) {
compute_primdata(primdata_[p12],s1,s2,p1,p2,pset);
}
}
primdata_[0].contrdepth = p12;
if (lmax == 0 && (type_ == overlap || type_ == nuclear)) { // (s|s) or (s|V|s)
auto& result = primdata_[0].stack[0];
switch (type_) {
case overlap:
for(auto p12=0; p12 != primdata_[0].contrdepth; ++p12)
result += primdata_[p12]._0_Overlap_0_x[0]
* primdata_[p12]._0_Overlap_0_y[0]
* primdata_[p12]._0_Overlap_0_z[0];
break;
case nuclear:
for(auto p12=0; p12 != primdata_[0].contrdepth; ++p12)
result += primdata_[p12].LIBINT_T_S_ELECPOT_S(0)[0];
break;
default:
assert(false);
}
primdata_[0].targets[0] = primdata_[0].stack;
}
else {
switch (type_) {
case overlap:
LIBINT2_PREFIXED_NAME(libint2_build_overlap)[s1.contr[0].l][s2.contr[0].l](&primdata_[0]);
break;
case kinetic:
LIBINT2_PREFIXED_NAME(libint2_build_kinetic)[s1.contr[0].l][s2.contr[0].l](&primdata_[0]);
break;
case nuclear:
LIBINT2_PREFIXED_NAME(libint2_build_elecpot)[s1.contr[0].l][s2.contr[0].l](&primdata_[0]);
break;
case emultipole1:
LIBINT2_PREFIXED_NAME(libint2_build_1emultipole)[s1.contr[0].l][s2.contr[0].l](&primdata_[0]);
break;
case emultipole2:
LIBINT2_PREFIXED_NAME(libint2_build_2emultipole)[s1.contr[0].l][s2.contr[0].l](&primdata_[0]);
break;
default:
assert(false);
}
if (accumulate_ints_in_scratch) {
const auto target_buf_size = num_shellsets * ncart12;
std::transform(primdata_[0].targets[0], primdata_[0].targets[0] + target_buf_size,
&scratch_[0],
&scratch_[0], std::plus<real_t>());
}
} // ltot != 0
} // pset (accumulation batches)
auto cartesian_ints = (accumulate_ints_in_scratch && lmax != 0) ? &scratch_[0] : primdata_[0].targets[0];
auto result = cartesian_ints;
if (s1.contr[0].pure || s2.contr[0].pure) {
auto* spherical_ints = (cartesian_ints == &scratch_[0]) ? primdata_[0].targets[0] : &scratch_[0];
result = spherical_ints;
for(unsigned int s=0; s!=num_shellsets; ++s, cartesian_ints+=ncart12, spherical_ints+=n12) {
if (s1.contr[0].pure && s2.contr[0].pure) {
libint2::solidharmonics::tform(l1, l2, cartesian_ints, spherical_ints);
}
else {
if (s1.contr[0].pure)
libint2::solidharmonics::tform_rows(l1, n2, cartesian_ints, spherical_ints);
else
libint2::solidharmonics::tform_cols(n1, l2, cartesian_ints, spherical_ints);
}
} // loop over shell sets
} // tform to solids
return result;
}
void compute_primdata(Libint_t& primdata,
const Shell& s1, const Shell& s2,
size_t p1, size_t p2,
size_t oset);
private:
operator_type type_;
std::vector<Libint_t> primdata_;
int lmax_;
size_t deriv_order_;
Any params_;
std::shared_ptr<coulomb_core_eval_t> fm_eval_; // this is for Coulomb only
std::vector<real_t> scratch_; // for transposes and/or transforming to solid harmonics
void initialize() {
const auto ncart_max = (lmax_+1)*(lmax_+2)/2;
switch(type_) {
case overlap: assert(lmax_ <= LIBINT2_MAX_AM_overlap); break;
case kinetic: assert(lmax_ <= LIBINT2_MAX_AM_kinetic); break;
case nuclear: assert(lmax_ <= LIBINT2_MAX_AM_elecpot); break;
case emultipole1: assert(lmax_ <= LIBINT2_MAX_AM_1emultipole); break;
case emultipole2: assert(lmax_ <= LIBINT2_MAX_AM_2emultipole); break;
default: assert(false);
}
assert(deriv_order_ <= LIBINT2_DERIV_ONEBODY_ORDER);
scratch_.resize(nshellsets() * ncart_max * ncart_max);
if (type_ == overlap) {
switch(deriv_order_) {
case 0:
libint2_init_overlap(&primdata_[0], lmax_, 0);
break;
case 1:
#if LIBINT2_DERIV_ONEBODY_ORDER > 0
libint2_init_overlap1(&primdata_[0], lmax_, 0);
#endif
break;
case 2:
#if LIBINT2_DERIV_ONEBODY_ORDER > 1
libint2_init_overlap2(&primdata_[0], lmax_, 0);
#endif
break;
default: assert(deriv_order_ < 3);
}
return;
}
if (type_ == kinetic) {
switch(deriv_order_) {
case 0:
libint2_init_kinetic(&primdata_[0], lmax_, 0);
break;
case 1:
#if LIBINT2_DERIV_ONEBODY_ORDER > 0
libint2_init_kinetic1(&primdata_[0], lmax_, 0);
#endif
break;
case 2:
#if LIBINT2_DERIV_ONEBODY_ORDER > 1
libint2_init_kinetic2(&primdata_[0], lmax_, 0);
#endif
break;
default: assert(deriv_order_ < 3);
}
return;
}
if (type_ == nuclear) {
switch(deriv_order_) {
case 0:
libint2_init_elecpot(&primdata_[0], lmax_, 0);
break;
case 1:
#if LIBINT2_DERIV_ONEBODY_ORDER > 0
libint2_init_elecpot1(&primdata_[0], lmax_, 0);
#endif
break;
case 2:
#if LIBINT2_DERIV_ONEBODY_ORDER > 1
libint2_init_elecpot2(&primdata_[0], lmax_, 0);
#endif
break;
default: assert(deriv_order_ < 3);
}
return;
}
if (type_ == emultipole1) {
switch(deriv_order_) {
case 0:
libint2_init_1emultipole(&primdata_[0], lmax_, 0);
break;
case 1:
#if LIBINT2_DERIV_ONEBODY_ORDER > 0
libint2_init_1emultipole1(&primdata_[0], lmax_, 0);
#endif
break;
case 2:
#if LIBINT2_DERIV_ONEBODY_ORDER > 1
libint2_init_1emultipole2(&primdata_[0], lmax_, 0);
#endif
break;
default: assert(deriv_order_ < 3);
}
return;
}
if (type_ == emultipole2) {
switch(deriv_order_) {
case 0:
libint2_init_2emultipole(&primdata_[0], lmax_, 0);
break;
case 1:
#if LIBINT2_DERIV_ONEBODY_ORDER > 0
libint2_init_2emultipole1(&primdata_[0], lmax_, 0);
#endif
break;
case 2:
#if LIBINT2_DERIV_ONEBODY_ORDER > 1
libint2_init_2emultipole2(&primdata_[0], lmax_, 0);
#endif
break;
default: assert(deriv_order_ < 3);
}
return;
}
assert(type_ == overlap || type_ == kinetic || type_ == nuclear ||
type_ == emultipole1 || type_ == emultipole2);
} // initialize()
void finalize() {
if (primdata_.size() != 0) {
if (type_ == overlap) {
switch(deriv_order_) {
case 0:
libint2_cleanup_overlap(&primdata_[0]);
break;
case 1:
#if LIBINT2_DERIV_ONEBODY_ORDER > 0
libint2_cleanup_overlap1(&primdata_[0]);
#endif
break;
case 2:
#if LIBINT2_DERIV_ONEBODY_ORDER > 1
libint2_cleanup_overlap2(&primdata_[0]);
#endif
break;
}
return;
}
if (type_ == kinetic) {
switch(deriv_order_) {
case 0:
libint2_cleanup_kinetic(&primdata_[0]);
break;
case 1:
#if LIBINT2_DERIV_ONEBODY_ORDER > 0
libint2_cleanup_kinetic1(&primdata_[0]);
#endif
break;
case 2:
#if LIBINT2_DERIV_ONEBODY_ORDER > 1
libint2_cleanup_kinetic2(&primdata_[0]);
#endif
break;
}
return;
}
if (type_ == nuclear) {
switch(deriv_order_) {
case 0:
libint2_cleanup_elecpot(&primdata_[0]);
break;
case 1:
#if LIBINT2_DERIV_ONEBODY_ORDER > 0
libint2_cleanup_elecpot1(&primdata_[0]);
#endif
break;
case 2:
#if LIBINT2_DERIV_ONEBODY_ORDER > 1
libint2_cleanup_elecpot2(&primdata_[0]);
#endif
break;
}
return;
}
if (type_ == emultipole1) {
switch(deriv_order_) {
case 0:
libint2_cleanup_1emultipole(&primdata_[0]);
break;
case 1:
#if LIBINT2_DERIV_ONEBODY_ORDER > 0
libint2_cleanup_1emultipole1(&primdata_[0]);
#endif
break;
case 2:
#if LIBINT2_DERIV_ONEBODY_ORDER > 1
libint2_cleanup_1emultipole2(&primdata_[0]);
#endif
break;
}
return;
}
if (type_ == emultipole2) {
switch(deriv_order_) {
case 0:
libint2_cleanup_2emultipole(&primdata_[0]);
break;
case 1:
#if LIBINT2_DERIV_ONEBODY_ORDER > 0
libint2_cleanup_2emultipole1(&primdata_[0]);
#endif
break;
case 2:
#if LIBINT2_DERIV_ONEBODY_ORDER > 1
libint2_cleanup_2emultipole2(&primdata_[0]);
#endif
break;
}
return;
}
}
} // finalize()
//-------
// utils
//-------
unsigned int nparams() const;
unsigned int nopers() const;
/// if Params == operator_traits<type>::oper_params_type, will return Any(params)
/// else will set return Any initialized with default value for operator_traits<type>::oper_params_type
/// @param throw_if_wrong_type if true, and Params != operator_traits<type>::oper_params_type, will throw std::bad_cast
template <typename Params>
static Any enforce_params_type(operator_type type,
const Params& params,
bool throw_if_wrong_type = not std::is_same<Params,empty_pod>::value);
}; // struct OneBodyEngine
template <OneBodyEngine::operator_type Op> struct OneBodyEngine::operator_traits {
typedef struct {} oper_params_type;
static constexpr unsigned int nopers = 1;
};
template <> struct OneBodyEngine::operator_traits<OneBodyEngine::nuclear> {
/// point charges and their positions
typedef std::vector<std::pair<double, std::array<double, 3>>> oper_params_type;
static constexpr unsigned int nopers = 1;
};
template <> struct OneBodyEngine::operator_traits<OneBodyEngine::emultipole1> {
/// Cartesian coordinates of the origin with respect to which the dipole moment is defined
typedef std::array<double, 3> oper_params_type;
static constexpr unsigned int nopers = 4; //!< overlap + 3 dipole components
};
template <> struct OneBodyEngine::operator_traits<OneBodyEngine::emultipole2> {
/// Cartesian coordinates of the origin with respect to which the multipole moments are defined
typedef std::array<double, 3> oper_params_type;
static constexpr unsigned int nopers = 10; //!< overlap + 3 dipoles + 6 quadrupoles
};
unsigned int OneBodyEngine::nparams() const {
switch (type_) {
case nuclear:
return params_.as<operator_traits<nuclear>::oper_params_type>().size();
default:
return 1;
}
return 1;
}
unsigned int OneBodyEngine::nopers() const {
switch (type_) {
case overlap: return operator_traits<overlap>::nopers;
case kinetic: return operator_traits<kinetic>::nopers;
case nuclear: return operator_traits<nuclear>::nopers;
case emultipole1: return operator_traits<emultipole1>::nopers;
case emultipole2: return operator_traits<emultipole2>::nopers;
default:
assert(false); // omitted case for some operator set?
}
assert(false); // unreachable
return 0;
}
template <typename Params>
Any OneBodyEngine::enforce_params_type(operator_type type,
const Params& params,
bool throw_if_wrong_type) {
Any result;
switch(type) {
case overlap:
if (std::is_same<Params,operator_traits<overlap>::oper_params_type>::value)
result = params;
else {
if (throw_if_wrong_type) throw std::bad_cast();
result = operator_traits<overlap>::oper_params_type();
}
break;
case kinetic:
if (std::is_same<Params,operator_traits<kinetic>::oper_params_type>::value)
result = params;
else {
if (throw_if_wrong_type) throw std::bad_cast();
result = operator_traits<kinetic>::oper_params_type();
}
break;
case nuclear:
if (std::is_same<Params,operator_traits<nuclear>::oper_params_type>::value)
result = params;
else {
if (throw_if_wrong_type) throw std::bad_cast();
result = operator_traits<nuclear>::oper_params_type(); // empty list of charges
}
break;
case emultipole1:
case emultipole2: // all emultipole operator sets require same param type
if (std::is_same<Params,operator_traits<emultipole1>::oper_params_type>::value)
result = params;
else {
if (throw_if_wrong_type) throw std::bad_cast();
result = operator_traits<emultipole1>::oper_params_type({{0.0,0.0,0.0}}); // multipole origin = {0,0,0}
}
break;
default:
assert(false); // missed a case?
}
return result;
}
void OneBodyEngine::compute_primdata(Libint_t& primdata,
const Shell& s1, const Shell& s2,
size_t p1, size_t p2,
size_t oset) {
const auto& A = s1.O;
const auto& B = s2.O;
const auto alpha1 = s1.alpha[p1];
const auto alpha2 = s2.alpha[p2];
const auto c1 = s1.contr[0].coeff[p1];
const auto c2 = s2.contr[0].coeff[p2];
const auto gammap = alpha1 + alpha2;
const auto oogammap = 1.0 / gammap;
const auto rhop = alpha1 * alpha2 * oogammap;
const auto Px = (alpha1 * A[0] + alpha2 * B[0]) * oogammap;
const auto Py = (alpha1 * A[1] + alpha2 * B[1]) * oogammap;
const auto Pz = (alpha1 * A[2] + alpha2 * B[2]) * oogammap;
const auto AB_x = A[0] - B[0];
const auto AB_y = A[1] - B[1];
const auto AB_z = A[2] - B[2];
const auto AB2_x = AB_x * AB_x;
const auto AB2_y = AB_y * AB_y;
const auto AB2_z = AB_z * AB_z;
const auto AB2 = AB2_x + AB2_y + AB2_z;
assert (LIBINT2_SHELLQUARTET_SET == LIBINT2_SHELLQUARTET_SET_STANDARD);
// overlap and kinetic energy ints don't use HRR, hence VRR on both centers
// Coulomb potential do HRR on center 1 only
#if LIBINT2_DEFINED(eri,PA_x)
primdata.PA_x[0] = Px - A[0];
#endif
#if LIBINT2_DEFINED(eri,PA_y)
primdata.PA_y[0] = Py - A[1];
#endif
#if LIBINT2_DEFINED(eri,PA_z)
primdata.PA_z[0] = Pz - A[2];
#endif
if (type_ != nuclear) {
#if LIBINT2_DEFINED(eri,PB_x)
primdata.PB_x[0] = Px - B[0];
#endif
#if LIBINT2_DEFINED(eri,PB_y)
primdata.PB_y[0] = Py - B[1];
#endif
#if LIBINT2_DEFINED(eri,PB_z)
primdata.PB_z[0] = Pz - B[2];
#endif
}
if (type_ == emultipole1 || type_ == emultipole2) {
auto& O = params_.as<operator_traits<emultipole1>::oper_params_type>(); // same as emultipole2
#if LIBINT2_DEFINED(eri,BO_x)
primdata.BO_x[0] = B[0] - O[0];
#endif
#if LIBINT2_DEFINED(eri,BO_y)
primdata.BO_y[0] = B[1] - O[1];
#endif
#if LIBINT2_DEFINED(eri,BO_z)
primdata.BO_z[0] = B[2] - O[2];
#endif
}
#if LIBINT2_DEFINED(eri,oo2z)
primdata.oo2z[0] = 0.5*oogammap;
#endif
if (type_ == nuclear) { // additional factor for electrostatic potential
auto& params = params_.as<operator_traits<nuclear>::oper_params_type>();
const auto& C = params[oset].second;
#if LIBINT2_DEFINED(eri,PC_x)
primdata.PC_x[0] = Px - C[0];
#endif
#if LIBINT2_DEFINED(eri,PC_y)
primdata.PC_y[0] = Py - C[1];
#endif
#if LIBINT2_DEFINED(eri,PC_z)
primdata.PC_z[0] = Pz - C[2];
#endif
// elecpot uses HRR
#if LIBINT2_DEFINED(eri,AB_x)
primdata.AB_x[0] = A[0] - B[0];
#endif
#if LIBINT2_DEFINED(eri,AB_y)
primdata.AB_y[0] = A[1] - B[1];
#endif
#if LIBINT2_DEFINED(eri,AB_z)
primdata.AB_z[0] = A[2] - B[2];
#endif
}
if (deriv_order_ > 0) {
// prefactors for derivative overlap relations
assert(false);
}
decltype(c1) sqrt_PI(1.77245385090551602729816748334);
const auto xyz_pfac = sqrt_PI * sqrt(oogammap);
const auto ovlp_ss_x = exp(- rhop * AB2_x) * xyz_pfac * c1 * c2;
const auto ovlp_ss_y = exp(- rhop * AB2_y) * xyz_pfac;
const auto ovlp_ss_z = exp(- rhop * AB2_z) * xyz_pfac;
primdata._0_Overlap_0_x[0] = ovlp_ss_x;
primdata._0_Overlap_0_y[0] = ovlp_ss_y;
primdata._0_Overlap_0_z[0] = ovlp_ss_z;
if (type_ == kinetic) {
#if LIBINT2_DEFINED(eri,two_alpha0_bra)
primdata.two_alpha0_bra[0] = 2.0 * alpha1;
#endif
#if LIBINT2_DEFINED(eri,two_alpha0_ket)
primdata.two_alpha0_ket[0] = 2.0 * alpha2;
#endif
}
if (type_ == nuclear) {
#if LIBINT2_DEFINED(eri,PC_x) && LIBINT2_DEFINED(eri,PC_y) && LIBINT2_DEFINED(eri,PC_z)
const auto PC2 = primdata.PC_x[0] * primdata.PC_x[0] +
primdata.PC_y[0] * primdata.PC_y[0] +
primdata.PC_z[0] * primdata.PC_z[0];
const auto U = gammap * PC2;
const auto ltot = s1.contr[0].l + s2.contr[0].l;
auto* fm_ptr = &(primdata.LIBINT_T_S_ELECPOT_S(0)[0]);
fm_eval_->eval(fm_ptr, U, ltot);
decltype(U) two_o_sqrt_PI(1.12837916709551257389615890312);
const auto q = params_.as<operator_traits<nuclear>::oper_params_type>()[oset].first;
const auto pfac = - q * sqrt(gammap) * two_o_sqrt_PI * ovlp_ss_x * ovlp_ss_y * ovlp_ss_z;
const auto ltot_p1 = ltot + 1;
for(auto m=0; m!=ltot_p1; ++m) {
fm_ptr[m] *= pfac;
}
#endif
}
} // OneBodyEngine::compute_primdata()
#endif // LIBINT2_SUPPORT_ONEBODY
/// types of multiplicative spherically-symmetric two-body kernels known by TwoBodyEngine
enum MultiplicativeSphericalTwoBodyKernel {
Coulomb, //!< \f$ 1/r_{12} \f$
cGTG, //!< contracted Gaussian geminal = \f$ \sum_i c_i \exp(- \alpha r_{12}^2) \f$
cGTG_times_Coulomb, //!< contracted Gaussian geminal times Coulomb
DelcGTG_square //!< (\f$ \nabla \f$ cGTG) \f$ \cdot \f$ (\f$ \nabla \f$ cGTG)
};
/// contracted Gaussian geminal = \f$ \sum_i c_i \exp(- \alpha r_{12}^2) \f$, represented as a vector of
/// {\f$ \alpha_i \f$, \f$ c_i \f$ } pairs
typedef std::vector<std::pair<double,double>> ContractedGaussianGeminal;
namespace detail {
template <int K> struct R12_K_G12_to_Kernel;
template <> struct R12_K_G12_to_Kernel<-1> {
static const MultiplicativeSphericalTwoBodyKernel value = cGTG_times_Coulomb;
};
template <> struct R12_K_G12_to_Kernel<0> {
static const MultiplicativeSphericalTwoBodyKernel value = cGTG;
};
template <> struct R12_K_G12_to_Kernel<2> {
static const MultiplicativeSphericalTwoBodyKernel value = DelcGTG_square;
};
template <MultiplicativeSphericalTwoBodyKernel Kernel> struct TwoBodyEngineDispatcher;
} // namespace detail
template <MultiplicativeSphericalTwoBodyKernel Kernel> struct TwoBodyEngineTraits;
template <> struct TwoBodyEngineTraits<Coulomb> {
typedef libint2::FmEval_Chebyshev3<double> core_eval_type;
//typedef libint2::FmEval_Taylor<double, 7> core_eval_type;
typedef struct {} oper_params_type;
};
template <> struct TwoBodyEngineTraits<cGTG> {
typedef libint2::GaussianGmEval<real_t, 0> core_eval_type;
typedef ContractedGaussianGeminal oper_params_type;
};
template <> struct TwoBodyEngineTraits<cGTG_times_Coulomb> {
typedef libint2::GaussianGmEval<real_t, -1> core_eval_type;
typedef ContractedGaussianGeminal oper_params_type;
};
template <> struct TwoBodyEngineTraits<DelcGTG_square> {
typedef libint2::GaussianGmEval<real_t, 2> core_eval_type;
typedef ContractedGaussianGeminal oper_params_type;
};
#ifdef LIBINT2_SUPPORT_ERI
/**
* TwoBodyEngine computes (ab|O|cd) (i.e. <em>four-center</em>) integrals over
* a two-body kernel of type MultiplicativeSphericalTwoBodyKernel using Obara-Saika-Ahlrichs relations.
*
* \tparam Kernel kernel type, the supported values are enumerated by MultiplicativeSphericalTwoBodyKernel
*/
template <MultiplicativeSphericalTwoBodyKernel Kernel>
class TwoBodyEngine {
public:
typedef typename libint2::TwoBodyEngineTraits<Kernel>::oper_params_type oper_params_type;
/// creates a default (unusable) TwoBodyEngine
TwoBodyEngine() : primdata_(), lmax_(-1), core_eval_(0) {
set_precision(std::numeric_limits<real_t>::epsilon());
}
/// Constructs a (usable) TwoBodyEngine
/// \param max_nprim the maximum number of primitives per contracted Gaussian shell
/// \param max_l the maximum angular momentum of Gaussian shell
/// \param deriv_level if not 0, will compute geometric derivatives of Gaussian integrals of order \c deriv_level
/// \param precision specifies the target precision with which the integrals will be computed; the default is the "epsilon"
/// of \c real_t type, given by \c std::numeric_limits<real_t>::epsilon(). The precision
/// control is somewhat empirical, hence be conservative. \sa set_precision()
/// \param oper_params specifies the operator parameters. The type of \c oper_params depends on \c Kernel as follows:
/// <ol>
/// <li> \c Coulomb : empty type (does not need to be provided) </li>
/// <li> \c cGTG : ContractedGaussianGeminal </li>
/// <li> \c cGTG_times_Coulomb : ContractedGaussianGeminal </li>
/// <li> \c DelcGTG_square : ContractedGaussianGeminal </li>
/// </ol>
/// \warning currently only the following kernel types are suported: \c Coulomb
/// \warning currently derivative integrals are not supported
/// \warning currently only one-contraction Shell objects are supported; i.e. generally-contracted Shells are not yet supported
TwoBodyEngine(size_t max_nprim, int max_l,
int deriv_order = 0,
real_t precision = std::numeric_limits<real_t>::epsilon(),
const oper_params_type& oparams = oper_params_type()) :
primdata_(max_nprim * max_nprim * max_nprim * max_nprim),
spbra_(max_nprim), spket_(max_nprim),
lmax_(max_l), deriv_order_(deriv_order),
core_eval_(core_eval_type::instance(4*lmax_ + deriv_order, std::min(std::numeric_limits<real_t>::epsilon(),precision)))
{
set_precision(precision);
initialize();
init_core_ints_params(oparams);
}
/// move constructor
TwoBodyEngine(TwoBodyEngine&& other) = default;
/// (deep) copy constructor
TwoBodyEngine(const TwoBodyEngine& other) :
primdata_(other.primdata_),
spbra_(other.spbra_), spket_(other.spket_),
lmax_(other.lmax_), deriv_order_(other.deriv_order_),
precision_(other.precision_), ln_precision_(other.ln_precision_),
core_eval_(other.core_eval_), core_ints_params_(other.core_ints_params_)
{
initialize();
}
~TwoBodyEngine() {
finalize();
}
/// move assignment
TwoBodyEngine& operator=(TwoBodyEngine&& other) = default;
/// (deep) copy assignment
TwoBodyEngine& operator=(const TwoBodyEngine& other)
{
primdata_ = other.primdata_;
lmax_ = other.lmax_;
deriv_order_ = other.deriv_order_;
precision_ = other.precision_;
ln_precision_ = other.ln_precision_;
core_eval_ = other.core_eval_;
core_ints_params_ = other.core_ints_params_;
initialize();
return *this;
}
static bool skip_core_ints;
#ifdef LIBINT2_ENGINE_TIMERS
Timers<3> timers; // timers[0] -> prereqs
// timers[1] -> build (only meaningful if LIBINT2_PROFILE is not defined
// timers[2] -> tform
# ifdef LIBINT2_ENGINE_PROFILE_CLASS
struct class_id {
size_t l[4];
template <typename I> class_id(I l0, I l1, I l2, I l3) {
l[0] = l0;
l[1] = l1;
l[2] = l2;
l[3] = l3;
}
bool operator<(const class_id& other) const {
return ordinal(l) < ordinal(other.l);
}
static size_t ordinal(const size_t (&l)[4]) {
return ((l[0]*LIBINT2_MAX_AM_ERI + l[1])*LIBINT2_MAX_AM_ERI + l[2])*LIBINT2_MAX_AM_ERI + l[3];
}
std::string to_string() const {
std::ostringstream oss;
oss << "(" << Shell::am_symbol(l[0]) << Shell::am_symbol(l[1])
<< "|" << Shell::am_symbol(l[2]) << Shell::am_symbol(l[3]) << ")";
return oss.str();
}
};
struct class_profile {
double prereqs;
double build_hrr;
double build_vrr;
double tform;
size_t nshellset; // total number of shell sets
size_t nprimset; // total number of primitive sets
class_profile() { clear(); }
class_profile(const class_profile& other) = default;
void clear() {
prereqs = build_hrr = build_vrr = tform = 0.;
nprimset = nshellset = 0;
}
};
std::map<class_id, class_profile> class_profiles;
# endif
#endif
/// computes shell set of integrals
/// \note result is stored in the "chemists" form, i.e. (tbra1 tbra2 |tket1 tket2), in row-major order
const real_t* compute(const libint2::Shell& tbra1,
const libint2::Shell& tbra2,
const libint2::Shell& tket1,
const libint2::Shell& tket2) {
//
// i.e. bra and ket refer to chemists bra and ket
//
// can only handle 1 contraction at a time
assert(tbra1.ncontr() == 1 && tbra2.ncontr() == 1 &&
tket1.ncontr() == 1 && tket2.ncontr() == 1);
// derivatives not supported for now
assert(deriv_order_ == 0);
#if LIBINT2_SHELLQUARTET_SET == LIBINT2_SHELLQUARTET_SET_STANDARD // standard angular momentum ordering
auto swap_bra = (tbra1.contr[0].l < tbra2.contr[0].l);
auto swap_ket = (tket1.contr[0].l < tket2.contr[0].l);
auto swap_braket = (tbra1.contr[0].l + tbra2.contr[0].l > tket1.contr[0].l + tket2.contr[0].l);
#else // orca angular momentum ordering
auto swap_bra = (tbra1.contr[0].l > tbra2.contr[0].l);
auto swap_ket = (tket1.contr[0].l > tket2.contr[0].l);
auto swap_braket = (tbra1.contr[0].l + tbra2.contr[0].l < tket1.contr[0].l + tket2.contr[0].l);
#endif
const auto& bra1 = swap_braket ? (swap_ket ? tket2 : tket1) : (swap_bra ? tbra2 : tbra1);
const auto& bra2 = swap_braket ? (swap_ket ? tket1 : tket2) : (swap_bra ? tbra1 : tbra2);
const auto& ket1 = swap_braket ? (swap_bra ? tbra2 : tbra1) : (swap_ket ? tket2 : tket1);
const auto& ket2 = swap_braket ? (swap_bra ? tbra1 : tbra2) : (swap_ket ? tket1 : tket2);
const bool tform = tbra1.contr[0].pure || tbra2.contr[0].pure || tket1.contr[0].pure || tket2.contr[0].pure;
const bool use_scratch = (swap_braket || swap_bra || swap_ket || tform);
// assert # of primitive pairs
auto nprim_bra1 = bra1.nprim();
auto nprim_bra2 = bra2.nprim();
auto nprim_ket1 = ket1.nprim();
auto nprim_ket2 = ket2.nprim();
// adjust max angular momentum, if needed
auto lmax = std::max(std::max(bra1.contr[0].l, bra2.contr[0].l), std::max(ket1.contr[0].l, ket2.contr[0].l));
assert (lmax <= lmax_);
if (lmax == 0) // (ss|ss) ints will be accumulated in the first element of stack
primdata_[0].stack[0] = 0;
#ifdef LIBINT2_ENGINE_PROFILE_CLASS
class_id id(bra1.contr[0].l, bra2.contr[0].l, ket1.contr[0].l, ket2.contr[0].l);
if (class_profiles.find(id) == class_profiles.end()) {
class_profile dummy;
class_profiles[id] = dummy;
}
#endif
// compute primitive data
#ifdef LIBINT2_ENGINE_TIMERS
timers.start(0);
#endif
{
auto p = 0;
spbra_.init(bra1, bra2, ln_precision_);
spket_.init(ket1, ket2, ln_precision_);
const auto npbra = spbra_.primpairs.size();
const auto npket = spket_.primpairs.size();
for(auto pb=0; pb!=npbra; ++pb) {
for(auto pk=0; pk!=npket; ++pk) {
if (spbra_.primpairs[pb].scr + spket_.primpairs[pk].scr > ln_precision_) {
if (compute_primdata(primdata_[p],bra1,bra2,ket1,ket2,spbra_,pb,spket_,pk)) {
++p;
}
}
}
}
primdata_[0].contrdepth = p;
}
#ifdef LIBINT2_ENGINE_TIMERS
const auto t0 = timers.stop(0);
# ifdef LIBINT2_ENGINE_PROFILE_CLASS
class_profiles[id].prereqs += t0.count();
if (primdata_[0].contrdepth != 0) {
class_profiles[id].nshellset += 1;
class_profiles[id].nprimset += primdata_[0].contrdepth;
}
# endif
#endif
// all primitive combinations screened out? return zeroes
if (primdata_[0].contrdepth == 0) {
const size_t n = bra1.size() * bra2.size() * ket1.size() * ket2.size();
memset(primdata_[0].stack, 0, sizeof(real_t)*n);
return primdata_[0].stack;
}
real_t* result = nullptr;
if (lmax == 0) { // (ss|ss)
#ifdef LIBINT2_ENGINE_TIMERS
timers.start(1);
#endif
auto& stack = primdata_[0].stack[0];
for(auto p=0; p != primdata_[0].contrdepth; ++p)
stack += primdata_[p].LIBINT_T_SS_EREP_SS(0)[0];
primdata_[0].targets[0] = primdata_[0].stack;
#ifdef LIBINT2_ENGINE_TIMERS
const auto t1 = timers.stop(1);
# ifdef LIBINT2_ENGINE_PROFILE_CLASS
class_profiles[id].build_vrr += t1.count();
# endif
#endif
result = primdata_[0].targets[0];
}
else { // not (ss|ss)
#ifdef LIBINT2_ENGINE_TIMERS
# ifdef LIBINT2_PROFILE
const auto t1_hrr_start = primdata_[0].timers->read(0);
const auto t1_vrr_start = primdata_[0].timers->read(1);
# endif
timers.start(1);
#endif
LIBINT2_PREFIXED_NAME(libint2_build_eri)[bra1.contr[0].l][bra2.contr[0].l][ket1.contr[0].l][ket2.contr[0].l](&primdata_[0]);
#ifdef LIBINT2_ENGINE_TIMERS
const auto t1 = timers.stop(1);
# ifdef LIBINT2_ENGINE_PROFILE_CLASS
# ifndef LIBINT2_PROFILE
class_profiles[id].build_vrr += t1.count();
# else
class_profiles[id].build_hrr += primdata_[0].timers->read(0) - t1_hrr_start;
class_profiles[id].build_vrr += primdata_[0].timers->read(1) - t1_vrr_start;
# endif
# endif
#endif
result = primdata_[0].targets[0];
#ifdef LIBINT2_ENGINE_TIMERS
timers.start(2);
#endif
// if needed, permute and transform
if (use_scratch) {
constexpr auto using_scalar_real = std::is_same<double,real_t>::value || std::is_same<float,real_t>::value;
static_assert(using_scalar_real, "Libint2 C++11 API only supports fundamental real types");
typedef Eigen::Matrix<real_t, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor > Matrix;
// a 2-d view of the 4-d source tensor
const auto nr1_cart = bra1.cartesian_size();
const auto nr2_cart = bra2.cartesian_size();
const auto nc1_cart = ket1.cartesian_size();
const auto nc2_cart = ket2.cartesian_size();
const auto ncol_cart = nc1_cart * nc2_cart;
const auto nr1 = bra1.size();
const auto nr2 = bra2.size();
const auto nc1 = ket1.size();
const auto nc2 = ket2.size();
const auto nrow = nr1 * nr2;
const auto ncol = nc1 * nc2;
// a 2-d view of the 4-d target tensor
const auto nr1_tgt = tbra1.size();
const auto nr2_tgt = tbra2.size();
const auto nc1_tgt = tket1.size();
const auto nc2_tgt = tket2.size();
const auto ncol_tgt = nc1_tgt * nc2_tgt;
// transform to solid harmonics first, then unpermute, if necessary
auto mainbuf = result;
auto scratchbuf = &scratch_[0];
if (bra1.contr[0].pure) {
libint2::solidharmonics::transform_first(bra1.contr[0].l, nr2_cart*ncol_cart,
mainbuf, scratchbuf);
std::swap(mainbuf, scratchbuf);
}
if (bra2.contr[0].pure) {
libint2::solidharmonics::transform_inner(bra1.size(), bra2.contr[0].l, ncol_cart,
mainbuf, scratchbuf);
std::swap(mainbuf, scratchbuf);
}
if (ket1.contr[0].pure) {
libint2::solidharmonics::transform_inner(nrow, ket1.contr[0].l, nc2_cart,
mainbuf, scratchbuf);
std::swap(mainbuf, scratchbuf);
}
if (ket2.contr[0].pure) {
libint2::solidharmonics::transform_last(bra1.size()*bra2.size()*ket1.size(), ket2.contr[0].l,
mainbuf, scratchbuf);
std::swap(mainbuf, scratchbuf);
}
// loop over rows of the source matrix
const auto* src_row_ptr = mainbuf;
auto tgt_ptr = scratchbuf;
for(auto r1=0; r1!=nr1; ++r1) {
for(auto r2=0; r2!=nr2; ++r2, src_row_ptr+=ncol) {
typedef Eigen::Map<const Matrix> ConstMap;
typedef Eigen::Map<Matrix> Map;
typedef Eigen::Map<Matrix, Eigen::Unaligned, Eigen::Stride<Eigen::Dynamic,Eigen::Dynamic> > StridedMap;
// represent this source row as a matrix
ConstMap src_blk_mat(src_row_ptr, nc1, nc2);
// and copy to the block of the target matrix
if (swap_braket) {
// if swapped bra and ket, a row of source becomes a column of target
// source row {r1,r2} is mapped to target column {r1,r2} if !swap_ket, else to {r2,r1}
const auto tgt_col_idx = !swap_ket ? r1 * nr2 + r2 : r2 * nr1 + r1;
StridedMap tgt_blk_mat(tgt_ptr + tgt_col_idx, nr1_tgt, nr2_tgt,
Eigen::Stride<Eigen::Dynamic,Eigen::Dynamic>(nr2_tgt*ncol_tgt,ncol_tgt));
if (swap_bra)
tgt_blk_mat = src_blk_mat.transpose();
else
tgt_blk_mat = src_blk_mat;
}
else {
// source row {r1,r2} is mapped to target row {r1,r2} if !swap_bra, else to {r2,r1}
const auto tgt_row_idx = !swap_bra ? r1 * nr2 + r2 : r2 * nr1 + r1;
Map tgt_blk_mat(tgt_ptr + tgt_row_idx*ncol, nc1_tgt, nc2_tgt);
if (swap_ket)
tgt_blk_mat = src_blk_mat.transpose();
else
tgt_blk_mat = src_blk_mat;
}
} // end of loop
} // over rows of source
result = scratchbuf;
} // if need_scratch => needed to transpose
#ifdef LIBINT2_ENGINE_TIMERS
const auto t2 = timers.stop(2);
# ifdef LIBINT2_ENGINE_PROFILE_CLASS
class_profiles[id].tform += t2.count();
# endif
#endif
} // not (ss|ss)
return result;
}
/** this specifies target precision for computing the integrals.
* target precision \f$ \epsilon \f$ is used in 3 ways:
* (1) to screen out primitive pairs in ShellPair object for which
* \f$ {\rm scr}_{12} = \max|c_1| \max|c_2| \exp(-\rho_{12} |AB|^2)/\gamma_{12} < \epsilon \f$ ;
* (2) to screen out primitive quartets outside compute_primdata() for which \f$ {\rm scr}_{12} {\rm scr}_{34} < \epsilon \f$;
* (3) to screen out primitive quartets inside compute_primdata() for which the prefactor of \f$ F_m(\rho, T) \f$ is smaller
* than \f$ \epsilon \f$ .
*/
void set_precision(real_t prec) {
if (prec <= 0.) {
precision_ = 0.;
ln_precision_ = std::numeric_limits<real_t>::lowest();
}
else {
precision_ = prec;
ln_precision_ = std::log(precision_);
}
}
/// @return the target precision for computing the integrals
/// @sa set_precision(real_t)
real_t precision() const {
return precision_;
}
void print_timers() {
#ifdef LIBINT2_ENGINE_TIMERS
std::cout << "timers: prereq = " << timers.read(0);
# ifndef LIBINT2_PROFILE // if libint's profiling was on, engine's build timer will include its overhead
// do not report it, detailed profiling from libint will be printed below
std::cout << " build = " << timers.read(1);
# endif
std::cout << " tform = " << timers.read(2) << std::endl;
#endif
#ifdef LIBINT2_PROFILE
std::cout << "build timers: hrr = " << primdata_[0].timers->read(0)
<< " vrr = " << primdata_[0].timers->read(1) << std::endl;
#endif
#ifdef LIBINT2_ENGINE_TIMERS
# ifdef LIBINT2_ENGINE_PROFILE_CLASS
for(const auto& p: class_profiles) {
printf("{\"%s\", %10.5lf, %10.5lf, %10.5lf, %10.5lf, %ld, %ld},\n",
p.first.to_string().c_str(),
p.second.prereqs,
p.second.build_vrr,
p.second.build_hrr,
p.second.tform,
p.second.nshellset,
p.second.nprimset);
}
# endif
#endif
}
private:
inline bool compute_primdata(Libint_t& primdata,
const Shell& sbra1,
const Shell& sbra2,
const Shell& sket1,
const Shell& sket2,
const ShellPair& spbra, size_t pbra,
const ShellPair& spket, size_t pket);
std::vector<Libint_t> primdata_;
ShellPair spbra_, spket_;
int lmax_;
size_t deriv_order_;
real_t precision_;
real_t ln_precision_;
typedef typename libint2::TwoBodyEngineTraits<Kernel>::core_eval_type core_eval_type;
std::shared_ptr<core_eval_type> core_eval_;
typedef oper_params_type core_ints_params_type; // currently core ints params are always same type as operator params
core_ints_params_type core_ints_params_;
/// converts operator parameters to core ints params
void init_core_ints_params(const oper_params_type& oparams);
std::vector<real_t> scratch_; // for transposes and/or transforming to solid harmonics
friend struct detail::TwoBodyEngineDispatcher<Kernel>;
void initialize() {
const auto ncart_max = (lmax_+1)*(lmax_+2)/2;
const auto max_shellpair_size = ncart_max * ncart_max;
const auto max_shellset_size = max_shellpair_size * max_shellpair_size;
assert(lmax_ <= LIBINT2_MAX_AM_ERI);
assert(deriv_order_ <= LIBINT2_DERIV_ONEBODY_ORDER);
switch(deriv_order_) {
case 0:
libint2_init_eri(&primdata_[0], lmax_, 0);
scratch_.resize(max_shellset_size);
break;
case 1:
#if LIBINT2_DERIV_ERI_ORDER > 0
libint2_init_eri1(&primdata_[0], lmax_, 0);
scratch_.resize(9 * max_shellset_size);
#endif
break;
case 2:
#if LIBINT2_DERIV_ERI_ORDER > 1
libint2_init_eri2(&primdata_[0], lmax_, 0);
scratch_.resize(45 * max_shellset_size);
#endif
break;
default: assert(deriv_order_ < 3);
}
#ifdef LIBINT2_ENGINE_TIMERS
timers.set_now_overhead(25);
#endif
#ifdef LIBINT2_PROFILE
primdata_[0].timers->set_now_overhead(25);
#endif
}
void finalize() {
if (primdata_.size() != 0) {
switch(deriv_order_) {
case 0:
libint2_cleanup_eri(&primdata_[0]);
break;
case 1:
#if LIBINT2_DERIV_ERI_ORDER > 0
libint2_cleanup_eri1(&primdata_[0]);
#endif
break;
case 2:
#if LIBINT2_DERIV_ERI_ORDER > 1
libint2_cleanup_eri2(&primdata_[0]);
#endif
break;
}
}
}
}; // struct TwoBodyEngine
namespace detail {
template <> struct TwoBodyEngineDispatcher<Coulomb> {
static void core_eval(TwoBodyEngine<Coulomb>* engine,
real_t* Fm,
int mmax,
real_t T,
real_t) {
engine->core_eval_->eval(Fm, T, mmax);
}
};
template <>
struct TwoBodyEngineDispatcher<cGTG_times_Coulomb> {
static void core_eval(TwoBodyEngine<cGTG_times_Coulomb>* engine,
real_t* Gm,
int mmax,
real_t T,
real_t rho) {
engine->core_eval_->eval(Gm, rho, T, mmax, engine->core_ints_params_);
}
};
template <>
struct TwoBodyEngineDispatcher<cGTG> {
static void core_eval(TwoBodyEngine<cGTG>* engine,
real_t* Gm,
int mmax,
real_t T,
real_t rho) {
engine->core_eval_->eval(Gm, rho, T, mmax, engine->core_ints_params_);
}
};
template <>
struct TwoBodyEngineDispatcher<DelcGTG_square> {
static void core_eval(TwoBodyEngine<DelcGTG_square>* engine,
real_t* Gm,
int mmax,
real_t T,
real_t rho) {
engine->core_eval_->eval(Gm, rho, T, mmax, engine->core_ints_params_);
}
};
}
template <MultiplicativeSphericalTwoBodyKernel Kernel>
bool TwoBodyEngine<Kernel>::skip_core_ints = false;
template <MultiplicativeSphericalTwoBodyKernel Kernel>
inline bool TwoBodyEngine<Kernel>::compute_primdata(Libint_t& primdata,
const Shell& sbra1,
const Shell& sbra2,
const Shell& sket1,
const Shell& sket2,
const ShellPair& spbra, size_t pbra,
const ShellPair& spket, size_t pket) {
const auto& A = sbra1.O;
const auto& B = sbra2.O;
const auto& C = sket1.O;
const auto& D = sket2.O;
const auto& AB = spbra.AB;
const auto& CD = spket.AB;
const auto& spbrapp = spbra.primpairs[pbra];
const auto& spketpp = spket.primpairs[pket];
const auto& pbra1 = spbrapp.p1;
const auto& pbra2 = spbrapp.p2;
const auto& pket1 = spketpp.p1;
const auto& pket2 = spketpp.p2;
const auto alpha0 = sbra1.alpha[pbra1];
const auto alpha1 = sbra2.alpha[pbra2];
const auto alpha2 = sket1.alpha[pket1];
const auto alpha3 = sket2.alpha[pket2];
const auto c0 = sbra1.contr[0].coeff[pbra1];
const auto c1 = sbra2.contr[0].coeff[pbra2];
const auto c2 = sket1.contr[0].coeff[pket1];
const auto c3 = sket2.contr[0].coeff[pket2];
const auto amtot = sbra1.contr[0].l + sket1.contr[0].l +
sbra2.contr[0].l + sket2.contr[0].l;
const auto gammap = alpha0 + alpha1;
const auto oogammap = spbrapp.one_over_gamma;
const auto rhop = alpha0 * alpha1 * oogammap;
const auto gammaq = alpha2 + alpha3;
const auto oogammaq = spketpp.one_over_gamma;
const auto rhoq = alpha2 * alpha3 * oogammaq;
const auto& P = spbrapp.P;
const auto& Q = spketpp.P;
const auto PQx = P[0] - Q[0];
const auto PQy = P[1] - Q[1];
const auto PQz = P[2] - Q[2];
const auto PQ2 = PQx * PQx + PQy * PQy + PQz * PQz;
const auto K12 = spbrapp.K * spketpp.K;
decltype(K12) two_times_M_PI_to_25(34.986836655249725693); // (2 \pi)^{5/2}
const auto gammapq = gammap + gammaq;
const auto sqrt_gammapq = sqrt(gammapq);
const auto oogammapq = 1.0 / (gammapq);
auto pfac = two_times_M_PI_to_25 * K12 * sqrt_gammapq * oogammapq;
pfac *= c0 * c1 * c2 * c3;
if (std::abs(pfac) < precision_)
return false;
const auto rho = gammap * gammaq * oogammapq;
const auto T = PQ2*rho;
auto* fm_ptr = &(primdata.LIBINT_T_SS_EREP_SS(0)[0]);
const auto mmax = amtot + deriv_order_;
if (!skip_core_ints)
detail::TwoBodyEngineDispatcher<Kernel>::core_eval(this, fm_ptr, mmax, T, rho);
for(auto m=0; m!=mmax+1; ++m) {
fm_ptr[m] *= pfac;
}
if (mmax == 0)
return true;
#if LIBINT2_DEFINED(eri,PA_x)
primdata.PA_x[0] = P[0] - A[0];
#endif
#if LIBINT2_DEFINED(eri,PA_y)
primdata.PA_y[0] = P[1] - A[1];
#endif
#if LIBINT2_DEFINED(eri,PA_z)
primdata.PA_z[0] = P[2] - A[2];
#endif
#if LIBINT2_DEFINED(eri,PB_x)
primdata.PB_x[0] = P[0] - B[0];
#endif
#if LIBINT2_DEFINED(eri,PB_y)
primdata.PB_y[0] = P[1] - B[1];
#endif
#if LIBINT2_DEFINED(eri,PB_z)
primdata.PB_z[0] = P[2] - B[2];
#endif
#if LIBINT2_DEFINED(eri,QC_x)
primdata.QC_x[0] = Q[0] - C[0];
#endif
#if LIBINT2_DEFINED(eri,QC_y)
primdata.QC_y[0] = Q[1] - C[1];
#endif
#if LIBINT2_DEFINED(eri,QC_z)
primdata.QC_z[0] = Q[2] - C[2];
#endif
#if LIBINT2_DEFINED(eri,QD_x)
primdata.QD_x[0] = Q[0] - D[0];
#endif
#if LIBINT2_DEFINED(eri,QD_y)
primdata.QD_y[0] = Q[1] - D[1];
#endif
#if LIBINT2_DEFINED(eri,QD_z)
primdata.QD_z[0] = Q[2] - D[2];
#endif
#if LIBINT2_DEFINED(eri,AB_x)
primdata.AB_x[0] = AB[0];
#endif
#if LIBINT2_DEFINED(eri,AB_y)
primdata.AB_y[0] = AB[1];
#endif
#if LIBINT2_DEFINED(eri,AB_z)
primdata.AB_z[0] = AB[2];
#endif
#if LIBINT2_DEFINED(eri,BA_x)
primdata.BA_x[0] = -AB[0];
#endif
#if LIBINT2_DEFINED(eri,BA_y)
primdata.BA_y[0] = -AB[1];
#endif
#if LIBINT2_DEFINED(eri,BA_z)
primdata.BA_z[0] = -AB[2];
#endif
#if LIBINT2_DEFINED(eri,CD_x)
primdata.CD_x[0] = CD[0];
#endif
#if LIBINT2_DEFINED(eri,CD_y)
primdata.CD_y[0] = CD[1];
#endif
#if LIBINT2_DEFINED(eri,CD_z)
primdata.CD_z[0] = CD[2];
#endif
#if LIBINT2_DEFINED(eri,DC_x)
primdata.DC_x[0] = -CD[0];
#endif
#if LIBINT2_DEFINED(eri,DC_y)
primdata.DC_y[0] = -CD[1];
#endif
#if LIBINT2_DEFINED(eri,DC_z)
primdata.DC_z[0] = -CD[2];
#endif
const auto gammap_o_gammapgammaq = oogammapq * gammap;
const auto gammaq_o_gammapgammaq = oogammapq * gammaq;
const auto Wx = (gammap_o_gammapgammaq * P[0] + gammaq_o_gammapgammaq * Q[0]);
const auto Wy = (gammap_o_gammapgammaq * P[1] + gammaq_o_gammapgammaq * Q[1]);
const auto Wz = (gammap_o_gammapgammaq * P[2] + gammaq_o_gammapgammaq * Q[2]);
#if LIBINT2_DEFINED(eri,WP_x)
primdata.WP_x[0] = Wx - P[0];
#endif
#if LIBINT2_DEFINED(eri,WP_y)
primdata.WP_y[0] = Wy - P[1];
#endif
#if LIBINT2_DEFINED(eri,WP_z)
primdata.WP_z[0] = Wz - P[2];
#endif
#if LIBINT2_DEFINED(eri,WQ_x)
primdata.WQ_x[0] = Wx - Q[0];
#endif
#if LIBINT2_DEFINED(eri,WQ_y)
primdata.WQ_y[0] = Wy - Q[1];
#endif
#if LIBINT2_DEFINED(eri,WQ_z)
primdata.WQ_z[0] = Wz - Q[2];
#endif
#if LIBINT2_DEFINED(eri,oo2z)
primdata.oo2z[0] = 0.5*oogammap;
#endif
#if LIBINT2_DEFINED(eri,oo2e)
primdata.oo2e[0] = 0.5*oogammaq;
#endif
#if LIBINT2_DEFINED(eri,oo2ze)
primdata.oo2ze[0] = 0.5*oogammapq;
#endif
#if LIBINT2_DEFINED(eri,roz)
primdata.roz[0] = rho*oogammap;
#endif
#if LIBINT2_DEFINED(eri,roe)
primdata.roe[0] = rho*oogammaq;
#endif
// using ITR?
#if LIBINT2_DEFINED(eri,TwoPRepITR_pfac0_0_0_x)
primdata.TwoPRepITR_pfac0_0_0_x[0] = - (alpha1*AB[0] + alpha3*CD[0]) * oogammap;
#endif
#if LIBINT2_DEFINED(eri,TwoPRepITR_pfac0_0_0_y)
primdata.TwoPRepITR_pfac0_0_0_y[0] = - (alpha1*AB[1] + alpha3*CD[1]) * oogammap;
#endif
#if LIBINT2_DEFINED(eri,TwoPRepITR_pfac0_0_0_z)
primdata.TwoPRepITR_pfac0_0_0_z[0] = - (alpha1*AB[2] + alpha3*CD[2]) * oogammap;
#endif
#if LIBINT2_DEFINED(eri,TwoPRepITR_pfac0_1_0_x)
primdata.TwoPRepITR_pfac0_1_0_x[0] = - (alpha1*AB[0] + alpha3*CD[0]) * oogammaq;
#endif
#if LIBINT2_DEFINED(eri,TwoPRepITR_pfac0_1_0_y)
primdata.TwoPRepITR_pfac0_1_0_y[0] = - (alpha1*AB[1] + alpha3*CD[1]) * oogammaq;
#endif
#if LIBINT2_DEFINED(eri,TwoPRepITR_pfac0_1_0_z)
primdata.TwoPRepITR_pfac0_1_0_z[0] = - (alpha1*AB[2] + alpha3*CD[2]) * oogammaq;
#endif
#if LIBINT2_DEFINED(eri,TwoPRepITR_pfac0_0_1_x)
primdata.TwoPRepITR_pfac0_0_1_x[0] = (alpha0*AB[0] + alpha2*CD[0]) * oogammap;
#endif
#if LIBINT2_DEFINED(eri,TwoPRepITR_pfac0_0_1_y)
primdata.TwoPRepITR_pfac0_0_1_y[0] = (alpha0*AB[1] + alpha2*CD[1]) * oogammap;
#endif
#if LIBINT2_DEFINED(eri,TwoPRepITR_pfac0_0_1_z)
primdata.TwoPRepITR_pfac0_0_1_z[0] = (alpha0*AB[2] + alpha2*CD[2]) * oogammap;
#endif
#if LIBINT2_DEFINED(eri,TwoPRepITR_pfac0_1_1_x)
primdata.TwoPRepITR_pfac0_1_1_x[0] = (alpha0*AB[0] + alpha2*CD[0]) * oogammaq;
#endif
#if LIBINT2_DEFINED(eri,TwoPRepITR_pfac0_1_1_y)
primdata.TwoPRepITR_pfac0_1_1_y[0] = (alpha0*AB[1] + alpha2*CD[1]) * oogammaq;
#endif
#if LIBINT2_DEFINED(eri,TwoPRepITR_pfac0_1_1_z)
primdata.TwoPRepITR_pfac0_1_1_z[0] = (alpha0*AB[2] + alpha2*CD[2]) * oogammaq;
#endif
#if LIBINT2_DEFINED(eri,eoz)
primdata.eoz[0] = gammaq*oogammap;
#endif
#if LIBINT2_DEFINED(eri,zoe)
primdata.zoe[0] = gammap*oogammaq;
#endif
// prefactors for derivative ERI relations
if (deriv_order_ > 0) {
#if LIBINT2_DEFINED(eri,alpha1_rho_over_zeta2)
primdata.alpha1_rho_over_zeta2[0] = alpha0 * rho / (gammap * gammap);
#endif
#if LIBINT2_DEFINED(eri,alpha2_rho_over_zeta2)
primdata.alpha2_rho_over_zeta2[0] = alpha1 * rho / (gammap * gammap);
#endif
#if LIBINT2_DEFINED(eri,alpha3_rho_over_eta2)
primdata.alpha3_rho_over_eta2[0] = alpha2 * rho / (gammaq * gammaq);
#endif
#if LIBINT2_DEFINED(eri,alpha4_rho_over_eta2)
primdata.alpha4_rho_over_eta2[0] = alpha3 * rho / (gammaq * gammaq);
#endif
#if LIBINT2_DEFINED(eri,alpha1_over_zetapluseta)
primdata.alpha1_over_zetapluseta[0] = alpha0 / (gammap + gammaq);
#endif
#if LIBINT2_DEFINED(eri,alpha2_over_zetapluseta)
primdata.alpha2_over_zetapluseta[0] = alpha1 / (gammap + gammaq);
#endif
#if LIBINT2_DEFINED(eri,alpha3_over_zetapluseta)
primdata.alpha3_over_zetapluseta[0] = alpha2 / (gammap + gammaq);
#endif
#if LIBINT2_DEFINED(eri,alpha4_over_zetapluseta)
primdata.alpha4_over_zetapluseta[0] = alpha3 / (gammap + gammaq);
#endif
#if LIBINT2_DEFINED(eri,rho12_over_alpha1)
primdata.rho12_over_alpha1[0] = rhop / alpha0;
#endif
#if LIBINT2_DEFINED(eri,rho12_over_alpha2)
primdata.rho12_over_alpha2[0] = rhop / alpha1;
#endif
#if LIBINT2_DEFINED(eri,rho34_over_alpha3)
primdata.rho34_over_alpha3[0] = rhoq / alpha2;
#endif
#if LIBINT2_DEFINED(eri,rho34_over_alpha4)
primdata.rho34_over_alpha4[0] = rhoq / alpha3;
#endif
#if LIBINT2_DEFINED(eri,two_alpha0_bra)
primdata.two_alpha0_bra[0] = 2.0 * alpha0;
#endif
#if LIBINT2_DEFINED(eri,two_alpha0_ket)
primdata.two_alpha0_ket[0] = 2.0 * alpha1;
#endif
#if LIBINT2_DEFINED(eri,two_alpha1_bra)
primdata.two_alpha1_bra[0] = 2.0 * alpha2;
#endif
#if LIBINT2_DEFINED(eri,two_alpha1_ket)
primdata.two_alpha1_ket[0] = 2.0 * alpha3;
#endif
}
return true;
}
template <>
inline void TwoBodyEngine<DelcGTG_square>::init_core_ints_params(
const oper_params_type& oparams) {
// [g12,[- \Del^2, g12] = 2 (\Del g12) \cdot (\Del g12)
// (\Del exp(-a r_12^2) \cdot (\Del exp(-b r_12^2) = 4 a b (r_{12}^2 exp(- (a+b) r_{12}^2) )
// i.e. need to scale each coefficient by 4 a b
const auto ng = oparams.size();
core_ints_params_.reserve(ng*(ng+1)/2);
for(size_t b=0; b<ng; ++b)
for(size_t k=0; k<=b; ++k) {
const auto gexp = oparams[b].first + oparams[k].first;
const auto gcoeff = oparams[b].second * oparams[k].second * (b == k ? 1 : 2); // if a != b include ab and ba
const auto gcoeff_rescaled = 4 * oparams[b].first * oparams[k].first * gcoeff;
core_ints_params_.push_back(std::make_pair(gexp, gcoeff_rescaled));
}
}
template <MultiplicativeSphericalTwoBodyKernel Kernel>
inline void TwoBodyEngine<Kernel>::init_core_ints_params(
const oper_params_type& oparams) {
core_ints_params_ = oparams;
}
#endif // LIBINT2_SUPPORT_ERI
} // namespace libint2
#endif /* _libint2_src_lib_libint_engine_h_ */
|