This file is indexed.

/usr/include/itpp/base/smat.h is in libitpp-dev 4.3.1-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
/*!
 * \file
 * \brief Sparse Matrix Class Definitions
 * \author Tony Ottosson and Tobias Ringstrom
 *
 * -------------------------------------------------------------------------
 *
 * Copyright (C) 1995-2010  (see AUTHORS file for a list of contributors)
 *
 * This file is part of IT++ - a C++ library of mathematical, signal
 * processing, speech processing, and communications classes and functions.
 *
 * IT++ is free software: you can redistribute it and/or modify it under the
 * terms of the GNU General Public License as published by the Free Software
 * Foundation, either version 3 of the License, or (at your option) any
 * later version.
 *
 * IT++ is distributed in the hope that it will be useful, but WITHOUT ANY
 * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License along
 * with IT++.  If not, see <http://www.gnu.org/licenses/>.
 *
 * -------------------------------------------------------------------------
 */

#ifndef SMAT_H
#define SMAT_H

#include <itpp/base/svec.h>
#include <itpp/itexports.h>

namespace itpp
{

// Declaration of class Vec
template <class T> class Vec;
// Declaration of class Mat
template <class T> class Mat;
// Declaration of class Sparse_Vec
template <class T> class Sparse_Vec;
// Declaration of class Sparse_Mat
template <class T> class Sparse_Mat;

// ------------------------ Sparse_Mat Friends -------------------------------------

//! m1+m2 where m1 and m2 are sparse matrices
template <class T>
Sparse_Mat<T> operator+(const Sparse_Mat<T> &m1, const Sparse_Mat<T> &m2);

//! c*m where c is a scalar and m is a sparse matrix
template <class T>
Sparse_Mat<T> operator*(const T &c, const Sparse_Mat<T> &m);

//! m1*m2 where m1 and m2 are sparse matrices
template <class T>
Sparse_Mat<T> operator*(const Sparse_Mat<T> &m1, const Sparse_Mat<T> &m2);

//! m*v where m is a sparse matrix and v is a sparse vector
template <class T>
Sparse_Vec<T> operator*(const Sparse_Mat<T> &m, const Sparse_Vec<T> &v);

//! m*v where m is a sparse matrix and v is a full column vector
template <class T>
Vec<T> operator*(const Sparse_Mat<T> &m, const Vec<T> &v);

//! v'*m where m is a sparse matrix and v is a full column vector
template <class T>
Vec<T> operator*(const Vec<T> &v, const Sparse_Mat<T> &m);

//! m'*m where m is a sparse matrix
template <class T>
Mat<T> trans_mult(const Sparse_Mat<T> &m);

//! m'*m where m is a sparse matrix
template <class T>
Sparse_Mat<T> trans_mult_s(const Sparse_Mat<T> &m);

//! m1'*m2 where m1 and m2 are sparse matrices
template <class T>
Sparse_Mat<T> trans_mult(const Sparse_Mat<T> &m1, const Sparse_Mat<T> &m2);

//! m'*v where m is a sparse matrix and v is a full column vector
template <class T>
Vec<T> trans_mult(const Sparse_Mat<T> &m, const Vec<T> &v);

//! m1*m2' where m1 and m2 are sparse matrices
template <class T>
Sparse_Mat<T> mult_trans(const Sparse_Mat<T> &m1, const Sparse_Mat<T> &m2);

/*!
  \brief Templated Sparse Matrix Class
  \author Tony Ottosson and Tobias Ringstrom

  A sparse matrix is a matrix where most elements are zero. The
  maximum number of non-zero elements in each column is a parameter
  to the constructor.

  The implementation is based on representing all columns as sparse
  vectors. Thus, column access generally is much faster than row
  access. The elements in each vector are stored in random order,
  i.e. they are not sorted.
*/
template <class T>
class Sparse_Mat
{
public:

  //! Default constructor
  Sparse_Mat();

  /*!
    \brief Initiate an empty sparse matrix

    A Sparse_Mat consists of colums that have the type Sparse_Vec. The maximum number of non-zero elements is each column
    is denoted \c row_data_init.

    \param rows Number of rows in the matrix
    \param cols Number of columns in the matrix
    \param row_data_init The maximum number of non-zero elements in each column (default value is 200)
  */
  Sparse_Mat(int rows, int cols, int row_data_init = 200);

  //! Initiate a new sparse matrix. The elements of \c m are copied into the new sparse matrix
  Sparse_Mat(const Sparse_Mat<T> &m);

  //! Initiate a new sparse matrix from a dense matrix. The elements of \c m are copied into the new sparse matrix
  Sparse_Mat(const Mat<T> &m);

  /*!
    \brief Initiate a new sparse matrix from a dense matrix. Elements of \c m larger than \c epsilon are copied into the new sparse matrix.

    \note If the type T is double complex, then the elements of \c m larger than \c abs(epsilon) are copied into the new sparse matrix.
  */
  Sparse_Mat(const Mat<T> &m, T epsilon);

  //! Destructor
  ~Sparse_Mat();

  /*!
    \brief Set the size of the sparse matrix

    A Sparse_Mat consists of colums that have the type Sparse_Vec. The maximum number of non-zero elements is each column
    is denoted \c row_data_init, with default value =-1 indicating that the number of data elements is not changed.

    \param rows Number of rows in the matrix
    \param cols Number of columns in the matrix
    \param row_data_init The maximum number of non-zero elements in each column (default value -1 \c => allocated size for the data is not changed)
  */
  void set_size(int rows, int cols, int row_data_init = -1);

  //! Returns the number of rows of the sparse matrix
  int rows() const { return n_rows; }

  //! Returns the number of columns of the sparse matrix
  int cols() const { return n_cols; }

  //! The number of non-zero elements in the sparse matrix
  int nnz();

  //! Returns the density of the sparse matrix: (number of non-zero elements)/(total number of elements)
  double density();

  //! Set the maximum number of non-zero elements in each column equal to the actual number of non-zero elements in each column
  void compact();

  //! Returns a full, dense matrix in \c m
  void full(Mat<T> &m) const;

  //! Returns a full, dense matrix
  Mat<T> full() const;

  //! Returns element of row \c r and column \c c
  T operator()(int r, int c) const;

  //! Set element (\c r, \c c ) equal to \c v
  void set(int r, int c, T v);

  //! Set a new element with index (\c r, \c c ) equal to \c v
  void set_new(int r, int c, T v);

  //! Add the element in row \c r and column \c c with \c v
  void add_elem(const int r, const int c, const T v);

  //! Set the sparse matrix to the all zero matrix (removes all non-zero elements)
  void zeros();

  //! Set the element in row \c r and column \c c to zero (i.e. clear that element if it contains a non-zero value)
  void zero_elem(const int r, const int c);

  //! Clear all non-zero elements of the sparse matrix
  void clear();

  //! Clear the element in row \c r and column \c c (if it contains a non-zero value)
  void clear_elem(const int r, const int c);

  //! Set submatrix defined by rows r1,r2 and columns c1,c2 to matrix m
  void set_submatrix(int r1, int r2, int c1, int c2, const Mat<T> &m);

  //! Set submatrix defined by upper-left element (\c r,\c c) and the size of matrix \c m to \c m
  void set_submatrix(int r, int c, const Mat<T>& m);

  //! Returns the sub-matrix from rows \c r1 to \c r2 and columns \c c1 to \c c2
  Sparse_Mat<T> get_submatrix(int r1, int r2, int c1, int c2) const;

  //! Returns the sub-matrix from columns \c c1 to \c c2 (all rows)
  Sparse_Mat<T> get_submatrix_cols(int c1, int c2) const;

  //! Returns column \c c of the Sparse_Mat in the Sparse_Vec \c v
  void get_col(int c, Sparse_Vec<T> &v) const;

  //! Returns column \c c of the Sparse_Mat
  Sparse_Vec<T> get_col(int c) const;

  //! Set column \c c of the Sparse_Mat
  void set_col(int c, const Sparse_Vec<T> &v);

  /*! Transpose the sparse matrix, return the result in \c m

  Note: this function can be slow for large matrices.
   */
  void transpose(Sparse_Mat<T> &m) const;

  /*! Returns the transpose of the sparse matrix

  Note: this function can be slow for large matrices.
  */
  Sparse_Mat<T> transpose() const;

  /*! Returns the transpose of the sparse matrix

  Note: this function can be slow for large matrices.
  */
  // Sparse_Mat<T> T() const { return this->transpose(); };

  //! Assign sparse matrix the value and dimensions of the sparse matrix \c m
  void operator=(const Sparse_Mat<T> &m);

  //! Assign sparse matrix the value and dimensions of the dense matrix \c m
  void operator=(const Mat<T> &m);

  //! Returns the sign inverse of all elements in the sparse matrix
  Sparse_Mat<T> operator-() const;

  //! Compare two sparse matricies. False if wrong sizes or different values
  bool operator==(const Sparse_Mat<T> &m) const;

  //! Add sparse matrix \c v to all non-zero elements of the sparse matrix
  void operator+=(const Sparse_Mat<T> &v);

  //! Add matrix \c v to all non-zero elements of the sparse matrix
  void operator+=(const Mat<T> &v);

  //! Subtract sparse matrix \c v from all non-zero elements of the sparse matrix
  void operator-=(const Sparse_Mat<T> &v);

  //! Subtract matrix \c v from all non-zero elements of the sparse matrix
  void operator-=(const Mat<T> &v);

  //! Multiply all non-zero elements of the sparse matrix with the scalar \c v
  void operator*=(const T &v);

  //! Divide all non-zero elements of the sparse matrix with the scalar \c v
  void operator/=(const T &v);

  //! Addition m1+m2 where m1 and m2 are sparse matrices
  friend Sparse_Mat<T> operator+<>(const Sparse_Mat<T> &m1, const Sparse_Mat<T> &m2);

  //! Multiplication c*m where c is a scalar and m is a sparse matrix
  friend Sparse_Mat<T> operator*<>(const T &c, const Sparse_Mat<T> &m);

  //! Multiplication m1*m2 where m1 and m2 are sparse matrices
  friend Sparse_Mat<T> operator*<>(const Sparse_Mat<T> &m1, const Sparse_Mat<T> &m2);

  //! Multiplication m*v where m is a sparse matrix and v is a sparse vector
  friend Sparse_Vec<T> operator*<>(const Sparse_Mat<T> &m, const Sparse_Vec<T> &v);

  //! Multiplication m*v where m is a sparse matrix and v is a full column vector
  friend Vec<T> operator*<>(const Sparse_Mat<T> &m, const Vec<T> &v);

  //! Multiplication v'*m where m is a sparse matrix and v is a full column vector
  friend Vec<T> operator*<>(const Vec<T> &v, const Sparse_Mat<T> &m);

  //! Multiplication m'*m where m is a sparse matrix. Returns a full, dense matrix
  friend Mat<T> trans_mult <>(const Sparse_Mat<T> &m);

  //! Multiplication m'*m where m is a sparse matrix, Returns a sparse matrix
  friend Sparse_Mat<T> trans_mult_s <>(const Sparse_Mat<T> &m);

  //! Multiplication m1'*m2 where m1 and m2 are sparse matrices
  friend Sparse_Mat<T> trans_mult <>(const Sparse_Mat<T> &m1, const Sparse_Mat<T> &m2);

  //! Multiplication m'*v where m is a sparse matrix and v is a full column vector
  friend Vec<T> trans_mult <>(const Sparse_Mat<T> &m, const Vec<T> &v);

  //! Multiplication m1*m2' where m1 and m2 are sparse matrices
  friend Sparse_Mat<T> mult_trans <>(const Sparse_Mat<T> &m1, const Sparse_Mat<T> &m2);

private:
  void init();
  void alloc_empty();
  void alloc(int row_data_size = 200);
  void free();

  int n_rows, n_cols;
  Sparse_Vec<T> *col;
};

/*!
  \relates Sparse_Mat
  \brief Sparse integer matrix
*/
typedef Sparse_Mat<int> sparse_imat;

/*!
  \relates Sparse_Mat
  \brief Sparse double matrix
*/
typedef Sparse_Mat<double> sparse_mat;

/*!
  \relates Sparse_Mat
  \brief Sparse complex<double> matrix
*/
typedef Sparse_Mat<std::complex<double> > sparse_cmat;

//---------------------- Implementation starts here --------------------------------

template <class T>
void Sparse_Mat<T>::init()
{
  n_rows = 0;
  n_cols = 0;
  col = 0;
}

template <class T>
void Sparse_Mat<T>::alloc_empty()
{
  if (n_cols == 0)
    col = 0;
  else
    col = new Sparse_Vec<T>[n_cols];
}

template <class T>
void Sparse_Mat<T>::alloc(int row_data_init)
{
  if (n_cols == 0)
    col = 0;
  else
    col = new Sparse_Vec<T>[n_cols];
  for (int c = 0; c < n_cols; c++)
    col[c].set_size(n_rows, row_data_init);
}

template <class T>
void Sparse_Mat<T>::free()
{
  delete [] col;
  col = 0;
}

template <class T>
Sparse_Mat<T>::Sparse_Mat()
{
  init();
}

template <class T>
Sparse_Mat<T>::Sparse_Mat(int rows, int cols, int row_data_init)
{
  init();
  n_rows = rows;
  n_cols = cols;
  alloc(row_data_init);
}

template <class T>
Sparse_Mat<T>::Sparse_Mat(const Sparse_Mat<T> &m)
{
  init();
  n_rows = m.n_rows;
  n_cols = m.n_cols;
  alloc_empty();

  for (int c = 0; c < n_cols; c++)
    col[c] = m.col[c];
}

template <class T>
Sparse_Mat<T>::Sparse_Mat(const Mat<T> &m)
{
  init();
  n_rows = m.rows();
  n_cols = m.cols();
  alloc();

  for (int c = 0; c < n_cols; c++) {
    for (int r = 0; r < n_rows; r++) {
      //if (abs(m(r,c)) != T(0))
      if (m(r, c) != T(0))
        col[c].set_new(r, m(r, c));
    }
    col[c].compact();
  }
}

template <class T>
Sparse_Mat<T>::Sparse_Mat(const Mat<T> &m, T epsilon)
{
  init();
  n_rows = m.rows();
  n_cols = m.cols();
  alloc();

  for (int c = 0; c < n_cols; c++) {
    for (int r = 0; r < n_rows; r++) {
      if (std::abs(m(r, c)) > std::abs(epsilon))
        col[c].set_new(r, m(r, c));
    }
    col[c].compact();
  }
}

template <class T>
Sparse_Mat<T>::~Sparse_Mat()
{
  free();
}

template <class T>
void Sparse_Mat<T>::set_size(int rows, int cols, int row_data_init)
{
  n_rows = rows;

  //Allocate new memory for data if the number of columns has changed or if row_data_init != -1
  if (cols != n_cols || row_data_init != -1) {
    n_cols = cols;
    free();
    alloc(row_data_init);
  }
}

template <class T>
int Sparse_Mat<T>::nnz()
{
  int n = 0;
  for (int c = 0; c < n_cols; c++)
    n += col[c].nnz();

  return n;
}

template <class T>
double Sparse_Mat<T>::density()
{
  //return static_cast<double>(nnz())/(n_rows*n_cols);
  return double(nnz()) / (n_rows*n_cols);
}

template <class T>
void Sparse_Mat<T>::compact()
{
  for (int c = 0; c < n_cols; c++)
    col[c].compact();
}

template <class T>
void Sparse_Mat<T>::full(Mat<T> &m) const
{
  m.set_size(n_rows, n_cols);
  m = T(0);
  for (int c = 0; c < n_cols; c++) {
    for (int p = 0; p < col[c].nnz(); p++)
      m(col[c].get_nz_index(p), c) = col[c].get_nz_data(p);
  }
}

template <class T>
Mat<T> Sparse_Mat<T>::full() const
{
  Mat<T> r(n_rows, n_cols);
  full(r);
  return r;
}

template <class T>
T Sparse_Mat<T>::operator()(int r, int c) const
{
  it_assert_debug(r >= 0 && r<n_rows && c >= 0 && c < n_cols, "Incorrect input indexes given");
  return col[c](r);
}

template <class T>
void Sparse_Mat<T>::set(int r, int c, T v)
{
  it_assert_debug(r >= 0 && r<n_rows && c >= 0 && c < n_cols, "Incorrect input indexes given");
  col[c].set(r, v);
}

template <class T>
void Sparse_Mat<T>::set_new(int r, int c, T v)
{
  it_assert_debug(r >= 0 && r<n_rows && c >= 0 && c < n_cols, "Incorrect input indexes given");
  col[c].set_new(r, v);
}

template <class T>
void Sparse_Mat<T>::add_elem(int r, int c, T v)
{
  it_assert_debug(r >= 0 && r<n_rows && c >= 0 && c < n_cols, "Incorrect input indexes given");
  col[c].add_elem(r, v);
}

template <class T>
void Sparse_Mat<T>::zeros()
{
  for (int c = 0; c < n_cols; c++)
    col[c].zeros();
}

template <class T>
void Sparse_Mat<T>::zero_elem(const int r, const int c)
{
  it_assert_debug(r >= 0 && r<n_rows && c >= 0 && c < n_cols, "Incorrect input indexes given");
  col[c].zero_elem(r);
}

template <class T>
void Sparse_Mat<T>::clear()
{
  for (int c = 0; c < n_cols; c++)
    col[c].clear();
}

template <class T>
void Sparse_Mat<T>::clear_elem(const int r, const int c)
{
  it_assert_debug(r >= 0 && r<n_rows && c >= 0 && c < n_cols, "Incorrect input indexes given");
  col[c].clear_elem(r);
}

template <class T>
void Sparse_Mat<T>::set_submatrix(int r1, int r2, int c1, int c2, const Mat<T>& m)
{
  if (r1 == -1) r1 = n_rows - 1;
  if (r2 == -1) r2 = n_rows - 1;
  if (c1 == -1) c1 = n_cols - 1;
  if (c2 == -1) c2 = n_cols - 1;

  it_assert_debug(r1 >= 0 && r2 >= 0 && r1 < n_rows && r2 < n_rows &&
                  c1 >= 0 && c2 >= 0 && c1 < n_cols && c2 < n_cols, "Sparse_Mat<Num_T>::set_submatrix(): index out of range");

  it_assert_debug(r2 >= r1 && c2 >= c1, "Sparse_Mat<Num_T>::set_submatrix: r2<r1 or c2<c1");
  it_assert_debug(m.rows() == r2 - r1 + 1 && m.cols() == c2 - c1 + 1, "Mat<Num_T>::set_submatrix(): sizes don't match");

  for (int i = 0 ; i < m.rows() ; i++) {
    for (int j = 0 ; j < m.cols() ; j++) {
      set(r1 + i, c1 + j, m(i, j));
    }
  }
}

template <class T>
void Sparse_Mat<T>::set_submatrix(int r, int c, const Mat<T>& m)
{
  it_assert_debug(r >= 0 && r + m.rows() <= n_rows &&
                  c >= 0 && c + m.cols() <= n_cols, "Sparse_Mat<Num_T>::set_submatrix(): index out of range");

  for (int i = 0 ; i < m.rows() ; i++) {
    for (int j = 0 ; j < m.cols() ; j++) {
      set(r + i, c + j, m(i, j));
    }
  }
}

template <class T>
Sparse_Mat<T> Sparse_Mat<T>::get_submatrix(int r1, int r2, int c1, int c2) const
{
  it_assert_debug(r1 <= r2 && r1 >= 0 && r1 < n_rows && c1 <= c2 && c1 >= 0 && c1 < n_cols,
                  "Sparse_Mat<T>::get_submatrix(): illegal input variables");

  Sparse_Mat<T> r(r2 - r1 + 1, c2 - c1 + 1);

  for (int c = c1; c <= c2; c++)
    r.col[c-c1] = col[c].get_subvector(r1, r2);
  r.compact();

  return r;
}

template <class T>
Sparse_Mat<T> Sparse_Mat<T>::get_submatrix_cols(int c1, int c2) const
{
  it_assert_debug(c1 <= c2 && c1 >= 0 && c1 < n_cols, "Sparse_Mat<T>::get_submatrix_cols()");
  Sparse_Mat<T> r(n_rows, c2 - c1 + 1, 0);

  for (int c = c1; c <= c2; c++)
    r.col[c-c1] = col[c];
  r.compact();

  return r;
}

template <class T>
void Sparse_Mat<T>::get_col(int c, Sparse_Vec<T> &v) const
{
  it_assert(c >= 0 && c < n_cols, "Sparse_Mat<T>::get_col()");
  v = col[c];
}

template <class T>
Sparse_Vec<T> Sparse_Mat<T>::get_col(int c) const
{
  it_assert(c >= 0 && c < n_cols, "Sparse_Mat<T>::get_col()");
  return col[c];
}

template <class T>
void Sparse_Mat<T>::set_col(int c, const Sparse_Vec<T> &v)
{
  it_assert(c >= 0 && c < n_cols, "Sparse_Mat<T>::set_col()");
  col[c] = v;
}

template <class T>
void Sparse_Mat<T>::transpose(Sparse_Mat<T> &m) const
{
  m.set_size(n_cols, n_rows);
  for (int c = 0; c < n_cols; c++) {
    for (int p = 0; p < col[c].nnz(); p++)
      m.col[col[c].get_nz_index(p)].set_new(c, col[c].get_nz_data(p));
  }
}

template <class T>
Sparse_Mat<T> Sparse_Mat<T>::transpose() const
{
  Sparse_Mat<T> m;
  transpose(m);
  return m;
}

template <class T>
void Sparse_Mat<T>::operator=(const Sparse_Mat<T> &m)
{
  free();
  n_rows = m.n_rows;
  n_cols = m.n_cols;
  alloc_empty();

  for (int c = 0; c < n_cols; c++)
    col[c] = m.col[c];
}

template <class T>
void Sparse_Mat<T>::operator=(const Mat<T> &m)
{
  free();
  n_rows = m.rows();
  n_cols = m.cols();
  alloc();

  for (int c = 0; c < n_cols; c++) {
    for (int r = 0; r < n_rows; r++) {
      if (m(r, c) != T(0))
        col[c].set_new(r, m(r, c));
    }
    col[c].compact();
  }
}

template <class T>
Sparse_Mat<T> Sparse_Mat<T>::operator-() const
{
  Sparse_Mat r(n_rows, n_cols, 0);

  for (int c = 0; c < n_cols; c++) {
    r.col[c].resize_data(col[c].nnz());
    for (int p = 0; p < col[c].nnz(); p++)
      r.col[c].set_new(col[c].get_nz_index(p), -col[c].get_nz_data(p));
  }

  return r;
}

template <class T>
bool Sparse_Mat<T>::operator==(const Sparse_Mat<T> &m) const
{
  if (n_rows != m.n_rows || n_cols != m.n_cols)
    return false;
  for (int c = 0; c < n_cols; c++) {
    if (!(col[c] == m.col[c]))
      return false;
  }
  // If they passed all tests, they must be equal
  return true;
}

template <class T>
void Sparse_Mat<T>::operator+=(const Sparse_Mat<T> &m)
{
  it_assert_debug(m.rows() == n_rows && m.cols() == n_cols, "Addition of unequal sized matrices is not allowed");

  Sparse_Vec<T> v;
  for (int c = 0; c < n_cols; c++) {
    m.get_col(c, v);
    col[c] += v;
  }
}

template <class T>
void Sparse_Mat<T>::operator+=(const Mat<T> &m)
{
  it_assert_debug(m.rows() == n_rows && m.cols() == n_cols, "Addition of unequal sized matrices is not allowed");

  for (int c = 0; c < n_cols; c++)
    col[c] += (m.get_col(c));
}

template <class T>
void Sparse_Mat<T>::operator-=(const Sparse_Mat<T> &m)
{
  it_assert_debug(m.rows() == n_rows && m.cols() == n_cols, "Subtraction of unequal sized matrices is not allowed");

  Sparse_Vec<T> v;
  for (int c = 0; c < n_cols; c++) {
    m.get_col(c, v);
    col[c] -= v;
  }
}

template <class T>
void Sparse_Mat<T>::operator-=(const Mat<T> &m)
{
  it_assert_debug(m.rows() == n_rows && m.cols() == n_cols, "Subtraction of unequal sized matrices is not allowed");

  for (int c = 0; c < n_cols; c++)
    col[c] -= (m.get_col(c));
}

template <class T>
void Sparse_Mat<T>::operator*=(const T &m)
{
  for (int c = 0; c < n_cols; c++)
    col[c] *= m;
}

template <class T>
void Sparse_Mat<T>::operator/=(const T &m)
{
  for (int c = 0; c < n_cols; c++)
    col[c] /= m;
}

template <class T>
Sparse_Mat<T> operator+(const Sparse_Mat<T> &m1, const Sparse_Mat<T> &m2)
{
  it_assert_debug(m1.n_cols == m2.n_cols && m1.n_rows == m2.n_rows , "Sparse_Mat<T> + Sparse_Mat<T>");

  Sparse_Mat<T> m(m1.n_rows, m1.n_cols, 0);

  for (int c = 0; c < m.n_cols; c++)
    m.col[c] = m1.col[c] + m2.col[c];

  return m;
}

// This function added by EGL, May'05
template <class T>
Sparse_Mat<T> operator*(const T &c, const Sparse_Mat<T> &m)
{
  int i, j;
  Sparse_Mat<T> ret(m.n_rows, m.n_cols);
  for (j = 0; j < m.n_cols; j++) {
    for (i = 0; i < m.col[j].nnz(); i++) {
      T x = c * m.col[j].get_nz_data(i);
      int k = m.col[j].get_nz_index(i);
      ret.set_new(k, j, x);
    }
  }
  return ret;
}

template <class T>
Sparse_Mat<T> operator*(const Sparse_Mat<T> &m1, const Sparse_Mat<T> &m2)
{
  it_assert_debug(m1.n_cols == m2.n_rows, "Sparse_Mat<T> * Sparse_Mat<T>");

  Sparse_Mat<T> ret(m1.n_rows, m2.n_cols);

  for (int c = 0; c < m2.n_cols; c++) {
    Sparse_Vec<T> &m2colc = m2.col[c];
    for (int p2 = 0; p2 < m2colc.nnz(); p2++) {
      Sparse_Vec<T> &mcol = m1.col[m2colc.get_nz_index(p2)];
      T x = m2colc.get_nz_data(p2);
      for (int p1 = 0; p1 < mcol.nnz(); p1++) {
        int r = mcol.get_nz_index(p1);
        T inc = mcol.get_nz_data(p1) * x;
        ret.col[c].add_elem(r, inc);
      }
    }
  }
  // old code
  /*       for (int c=0; c<m2.n_cols; c++) { */
  /*  for (int p2=0; p2<m2.col[c].nnz(); p2++) { */
  /*    Sparse_Vec<T> &mcol = m1.col[m2.col[c].get_nz_index(p2)]; */
  /*    for (int p1=0; p1<mcol.nnz(); p1++) { */
  /*      int r = mcol.get_nz_index(p1); */
  /*      T inc = mcol.get_nz_data(p1) * m2.col[c].get_nz_data(p2); */
  /*      ret.col[c].add_elem(r,inc); */
  /*    } */
  /*  } */
  /*       } */
  ret.compact();
  return ret;
}


// This is apparently buggy.
/*   template <class T> */
/*     Sparse_Mat<T> operator*(const Sparse_Mat<T> &m1, const Sparse_Mat<T> &m2) */
/*     { */
/*       it_assert_debug(m1.n_cols == m2.n_rows, "Sparse_Mat<T> * Sparse_Mat<T>"); */

/*       Sparse_Mat<T> ret(m1.n_rows, m2.n_cols); */
/*       ivec occupied_by(ret.n_rows), pos(ret.n_rows); */
/*       for (int rp=0; rp<m1.n_rows; rp++) */
/*  occupied_by[rp] = -1; */
/*       for (int c=0; c<ret.n_cols; c++) { */
/*  Sparse_Vec<T> &m2col = m2.col[c]; */
/*  for (int p2=0; p2<m2col.nnz(); p2++) { */
/*    Sparse_Vec<T> &m1col = m1.col[m2col.get_nz_index(p2)]; */
/*    for (int p1=0; p1<m1col.nnz(); p1++) { */
/*      int r = m1col.get_nz_index(p1); */
/*      T inc = m1col.get_nz_data(p1) * m2col.get_nz_data(p2); */
/*      if (occupied_by[r] == c) { */
/*        int index=ret.col[c].get_nz_index(pos[r]); */
/*        ret.col[c].add_elem(index,inc); */
/*      } */
/*      else { */
/*        occupied_by[r] = c; */
/*        pos[r] = ret.col[c].nnz(); */
/*        ret.col[c].set_new(r, inc); */
/*      } */
/*    } */
/*  } */
/*       } */
/*       ret.compact(); */

/*       return ret; */
/*     } */


// This function added by EGL, May'05
template <class T>
Sparse_Vec<T> operator*(const Sparse_Mat<T> &m, const Sparse_Vec<T> &v)
{
  it_assert_debug(m.n_cols == v.size(), "Sparse_Mat<T> * Sparse_Vec<T>");

  Sparse_Vec<T> ret(m.n_rows);

  /* The two lines below added because the input parameter "v" is
  declared const, but the some functions (e.g., nnz()) change
  the vector... Is there a better workaround? */
  Sparse_Vec<T> vv = v;

  for (int p2 = 0; p2 < vv.nnz(); p2++) {
    Sparse_Vec<T> &mcol = m.col[vv.get_nz_index(p2)];
    T x = vv.get_nz_data(p2);
    for (int p1 = 0; p1 < mcol.nnz(); p1++) {
      int r = mcol.get_nz_index(p1);
      T inc = mcol.get_nz_data(p1) * x;
      ret.add_elem(r, inc);
    }
  }
  ret.compact();
  return ret;
}


template <class T>
Vec<T> operator*(const Sparse_Mat<T> &m, const Vec<T> &v)
{
  it_assert_debug(m.n_cols == v.size(), "Sparse_Mat<T> * Vec<T>");

  Vec<T> r(m.n_rows);
  r.clear();

  for (int c = 0; c < m.n_cols; c++) {
    for (int p = 0; p < m.col[c].nnz(); p++)
      r(m.col[c].get_nz_index(p)) += m.col[c].get_nz_data(p) * v(c);
  }

  return r;
}

template <class T>
Vec<T> operator*(const Vec<T> &v, const Sparse_Mat<T> &m)
{
  it_assert_debug(v.size() == m.n_rows, "Vec<T> * Sparse_Mat<T>");

  Vec<T> r(m.n_cols);
  r.clear();

  for (int c = 0; c < m.n_cols; c++)
    r[c] = v * m.col[c];

  return r;
}

template <class T>
Mat<T> trans_mult(const Sparse_Mat<T> &m)
{
  Mat<T> ret(m.n_cols, m.n_cols);
  Vec<T> col;
  for (int c = 0; c < ret.cols(); c++) {
    m.col[c].full(col);
    for (int r = 0; r < c; r++) {
      T tmp = m.col[r] * col;
      ret(r, c) = tmp;
      ret(c, r) = tmp;
    }
    ret(c, c) = m.col[c].sqr();
  }

  return ret;
}

template <class T>
Sparse_Mat<T> trans_mult_s(const Sparse_Mat<T> &m)
{
  Sparse_Mat<T> ret(m.n_cols, m.n_cols);
  Vec<T> col;
  T tmp;
  for (int c = 0; c < ret.n_cols; c++) {
    m.col[c].full(col);
    for (int r = 0; r < c; r++) {
      tmp = m.col[r] * col;
      if (tmp != T(0)) {
        ret.col[c].set_new(r, tmp);
        ret.col[r].set_new(c, tmp);
      }
    }
    tmp = m.col[c].sqr();
    if (tmp != T(0))
      ret.col[c].set_new(c, tmp);
  }

  return ret;
}

template <class T>
Sparse_Mat<T> trans_mult(const Sparse_Mat<T> &m1, const Sparse_Mat<T> &m2)
{
  it_assert_debug(m1.n_rows == m2.n_rows, "trans_mult()");

  Sparse_Mat<T> ret(m1.n_cols, m2.n_cols);
  Vec<T> col;
  for (int c = 0; c < ret.n_cols; c++) {
    m2.col[c].full(col);
    for (int r = 0; r < ret.n_rows; r++)
      ret.col[c].set_new(r, m1.col[r] * col);
  }

  return ret;
}

template <class T>
Vec<T> trans_mult(const Sparse_Mat<T> &m, const Vec<T> &v)
{
  Vec<T> r(m.n_cols);
  for (int c = 0; c < m.n_cols; c++)
    r(c) = m.col[c] * v;

  return r;
}

template <class T>
Sparse_Mat<T> mult_trans(const Sparse_Mat<T> &m1, const Sparse_Mat<T> &m2)
{
  return trans_mult(m1.transpose(), m2.transpose());
}

//! Convert a dense matrix \c m into its sparse representation
template <class T>
inline Sparse_Mat<T> sparse(const Mat<T> &m, T epsilon)
{
  Sparse_Mat<T> s(m, epsilon);
  return s;
}

//! Convert a sparse matrix \c s into its dense representation
template <class T>
inline Mat<T> full(const Sparse_Mat<T> &s)
{
  Mat<T> m;
  s.full(m);
  return m;
}

//! Transpose a sparse matrix \c s
template <class T>
inline Sparse_Mat<T> transpose(const Sparse_Mat<T> &s)
{
  Sparse_Mat<T> m;
  s.transpose(m);
  return m;
}

//! \cond

// ---------------------------------------------------------------------
// Instantiations
// ---------------------------------------------------------------------

ITPP_EXPORT_TEMPLATE template class ITPP_EXPORT Sparse_Mat<int>;
ITPP_EXPORT_TEMPLATE template class ITPP_EXPORT Sparse_Mat<double>;
ITPP_EXPORT_TEMPLATE template class ITPP_EXPORT Sparse_Mat<std::complex<double> >;

ITPP_EXPORT_TEMPLATE template ITPP_EXPORT sparse_imat operator+(const sparse_imat &, const sparse_imat &);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT sparse_mat operator+(const sparse_mat &, const sparse_mat &);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT sparse_cmat operator+(const sparse_cmat &, const sparse_cmat &);

ITPP_EXPORT_TEMPLATE template ITPP_EXPORT sparse_imat operator*(const sparse_imat &, const sparse_imat &);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT sparse_mat operator*(const sparse_mat &, const sparse_mat &);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT sparse_cmat operator*(const sparse_cmat &, const sparse_cmat &);

ITPP_EXPORT_TEMPLATE template ITPP_EXPORT ivec operator*(const ivec &, const sparse_imat &);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT vec operator*(const vec &, const sparse_mat &);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT cvec operator*(const cvec &, const sparse_cmat &);

ITPP_EXPORT_TEMPLATE template ITPP_EXPORT ivec operator*(const sparse_imat &, const ivec &);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT vec operator*(const sparse_mat &, const vec &);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT cvec operator*(const sparse_cmat &, const cvec &);

ITPP_EXPORT_TEMPLATE template ITPP_EXPORT imat trans_mult(const sparse_imat &);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT mat trans_mult(const sparse_mat &);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT cmat trans_mult(const sparse_cmat &);

ITPP_EXPORT_TEMPLATE template ITPP_EXPORT sparse_imat trans_mult_s(const sparse_imat &);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT sparse_mat trans_mult_s(const sparse_mat &);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT sparse_cmat trans_mult_s(const sparse_cmat &);

ITPP_EXPORT_TEMPLATE template ITPP_EXPORT sparse_imat trans_mult(const sparse_imat &, const sparse_imat &);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT sparse_mat trans_mult(const sparse_mat &, const sparse_mat &);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT sparse_cmat trans_mult(const sparse_cmat &, const sparse_cmat &);

ITPP_EXPORT_TEMPLATE template ITPP_EXPORT ivec trans_mult(const sparse_imat &, const ivec &);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT vec trans_mult(const sparse_mat &, const vec &);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT cvec trans_mult(const sparse_cmat &, const cvec &);

ITPP_EXPORT_TEMPLATE template ITPP_EXPORT sparse_imat mult_trans(const sparse_imat &, const sparse_imat &);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT sparse_mat mult_trans(const sparse_mat &, const sparse_mat &);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT sparse_cmat mult_trans(const sparse_cmat &, const sparse_cmat &);

//! \endcond

} // namespace itpp

#endif // #ifndef SMAT_H