/usr/include/itpp/fixed/fix_functions.h is in libitpp-dev 4.3.1-6.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 | /*!
* \file
* \brief Definitions of a set of functions for Fix, Fixed, CFix and
* CFixed classes
* \author Johan Bergman
*
* -------------------------------------------------------------------------
*
* Copyright (C) 1995-2010 (see AUTHORS file for a list of contributors)
*
* This file is part of IT++ - a C++ library of mathematical, signal
* processing, speech processing, and communications classes and functions.
*
* IT++ is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* IT++ is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along
* with IT++. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#ifndef FIX_FUNCTIONS_H
#define FIX_FUNCTIONS_H
#include <itpp/fixed/cfix.h>
#include <itpp/base/vec.h>
#include <itpp/base/mat.h>
#include <itpp/base/array.h>
#include <itpp/base/converters.h>
#include <itpp/itexports.h>
namespace itpp
{
//! \addtogroup fixed
//!@{
//! Return true only if argument is of type Fix or CFix (or an Array/Vec/Mat of Fix or CFix)
template<class T> inline bool is_fix(const T &) {return false;}
//! Return true only if argument is of type Fix or CFix (or an Array/Vec/Mat of Fix or CFix)
template<> inline bool is_fix(const Fix &) {return true;}
//! Return true only if argument is of type Fix or CFix (or an Array/Vec/Mat of Fix or CFix)
template<> inline bool is_fix(const fixvec &) {return true;}
//! Return true only if argument is of type Fix or CFix (or an Array/Vec/Mat of Fix or CFix)
template<> inline bool is_fix(const fixmat &) {return true;}
//! Return true only if argument is of type Fix or CFix (or an Array/Vec/Mat of Fix or CFix)
template<> inline bool is_fix(const CFix &) {return true;}
//! Return true only if argument is of type Fix or CFix (or an Array/Vec/Mat of Fix or CFix)
template<> inline bool is_fix(const cfixvec &) {return true;}
//! Return true only if argument is of type Fix or CFix (or an Array/Vec/Mat of Fix or CFix)
template<> inline bool is_fix(const cfixmat &) {return true;}
//! Return true only if argument is of type Fix or CFix (or an Array/Vec/Mat of Fix or CFix)
template<class T> inline bool is_fix(const Array<T> &) {return is_fix(T());}
//! Set <tt>y = x * pow2(n)</tt> using the quantization mode of \c y
inline void set_fix(Fix &y, double x, int n) {y.set(x, n);}
//! Set <tt>y = x * pow2(n)</tt> using the specified quantization mode \c q
inline void set_fix(Fix &y, double x, int n, q_mode q) {y.set(x, n, q);}
//! Set <tt>y = x * pow2(n)</tt> using the quantization mode of \c y
inline void set_fix(fixvec &y, const vec &x, int n)
{
y.set_size(x.length());
for (int i = 0; i < y.size(); i++) y(i).set(x(i), n);
}
//! Set <tt>y = x * pow2(n)</tt> using the specified quantization mode \c q
inline void set_fix(fixvec &y, const vec &x, int n, q_mode q)
{
y.set_size(x.length());
for (int i = 0; i < y.size(); i++) y(i).set(x(i), n, q);
}
//! Set <tt>y = x * pow2(n)</tt> using the quantization mode of \c y
inline void set_fix(fixmat &y, const mat &x, int n)
{
y.set_size(x.rows(), x.cols());
for (int i = 0; i < y.size(); i++) y(i).set(x(i), n);
}
//! Set <tt>y = x * pow2(n)</tt> using the specified quantization mode \c q
inline void set_fix(fixmat &y, const mat &x, int n, q_mode q)
{
y.set_size(x.rows(), x.cols());
for (int i = 0; i < y.size(); i++) y(i).set(x(i), n, q);
}
//! Set <tt>y = x</tt>. Useful in templated code
inline void set_fix(double &y, double x, int) {y = x;}
//! Set <tt>y = x</tt>. Useful in templated code
inline void set_fix(double &y, double x, int, q_mode) {y = x;}
//! Set <tt>y = x</tt>. Useful in templated code
inline void set_fix(vec &y, const vec &x, int) {y = x;}
//! Set <tt>y = x</tt>. Useful in templated code
inline void set_fix(vec &y, const vec &x, int, q_mode) {y = x;}
//! Set <tt>y = x</tt>. Useful in templated code
inline void set_fix(mat &y, const mat &x, int) {y = x;}
//! Set <tt>y = x</tt>. Useful in templated code
inline void set_fix(mat &y, const mat &x, int, q_mode) {y = x;}
//! Set <tt>y = x * pow2(n)</tt> using the quantization mode of \c y
inline void set_fix(CFix &y, std::complex<double> x, int n) {y.set(x, n);}
//! Set <tt>y = (real + i*imag) * pow2(n)</tt> using the quantization mode of \c y
inline void set_fix(CFix &y, double real, double imag, int n) {y.set(real, imag, n);}
//! Set <tt>y = x * pow2(n)</tt> using the specified quantization mode \c q
inline void set_fix(CFix &y, std::complex<double> x, int n, q_mode q) {y.set(x, n, q);}
//! Set <tt>y = (real + i*imag) * pow2(n)</tt> using the specified quantization mode \c q
inline void set_fix(CFix &y, double real, double imag, int n, q_mode q) {y.set(real, imag, n, q);}
//! Set <tt>y = x * pow2(n)</tt> using the quantization mode of \c y
inline void set_fix(cfixvec &y, const cvec &x, int n)
{
y.set_size(x.length());
for (int i = 0; i < y.size(); i++) y(i).set(x(i), n);
}
//! Set <tt>y = (real + i*imag) * pow2(n)</tt> using the quantization mode of \c y
inline void set_fix(cfixvec &y, const vec &real, const vec &imag, int n)
{
it_assert_debug(real.length() == imag.length(), "set_fix: real and imag should have the same size");
y.set_size(real.length());
for (int i = 0; i < y.size(); i++) y(i).set(real(i), imag(i), n);
}
//! Set <tt>y = x * pow2(n)</tt> using the specified quantization mode \c q
inline void set_fix(cfixvec &y, const cvec &x, int n, q_mode q)
{
y.set_size(x.length());
for (int i = 0; i < y.size(); i++) y(i).set(x(i), n, q);
}
//! Set <tt>y = (real + i*imag) * pow2(n)</tt> using the specified quantization mode \c q
inline void set_fix(cfixvec &y, const vec &real, const vec &imag, int n, q_mode q)
{
it_assert_debug(real.length() == imag.length(), "set_fix: real and imag should have the same size");
y.set_size(real.length());
for (int i = 0; i < y.size(); i++) y(i).set(real(i), imag(i), n, q);
}
//! Set <tt>y = x * pow2(n)</tt> using the quantization mode of \c y
inline void set_fix(cfixmat &y, const cmat &x, int n)
{
y.set_size(x.rows(), x.cols());
for (int i = 0; i < y.size(); i++) y(i).set(x(i), n);
}
//! Set <tt>y = (real + i*imag) * pow2(n)</tt> using the quantization mode of \c y
inline void set_fix(cfixmat &y, const mat &real, const mat &imag, int n)
{
it_assert_debug(real.rows() == imag.rows() && real.cols() == imag.cols(), "set_fix: real and imag should have the same size");
y.set_size(real.rows(), real.cols());
for (int i = 0; i < y.size(); i++) y(i).set(real(i), imag(i), n);
}
//! Set <tt>y = x * pow2(n)</tt> using the specified quantization mode \c q
inline void set_fix(cfixmat &y, const cmat &x, int n, q_mode q)
{
y.set_size(x.rows(), x.cols());
for (int i = 0; i < y.size(); i++) y(i).set(x(i), n, q);
}
//! Set <tt>y = (real + i*imag) * pow2(n)</tt> using the specified quantization mode \c q
inline void set_fix(cfixmat &y, const mat &real, const mat &imag, int n, q_mode q)
{
it_assert_debug(real.rows() == imag.rows() && real.cols() == imag.cols(), "set_fix: real and imag should have the same size");
y.set_size(real.rows(), real.cols());
for (int i = 0; i < y.size(); i++) y(i).set(real(i), imag(i), n, q);
}
//! Set <tt>y = x</tt>. Useful in templated code
inline void set_fix(std::complex<double> &y, const std::complex<double> &x, int) {y = x;}
//! Set <tt>y = real + i*imag</tt>. Useful in templated code
inline void set_fix(std::complex<double> &y, double real, double imag, int) {y = std::complex<double>(real, imag);}
//! Set <tt>y = x</tt>. Useful in templated code
inline void set_fix(std::complex<double> &y, const std::complex<double> &x, int, q_mode) {y = x;}
//! Set <tt>y = real + i*imag</tt>. Useful in templated code
inline void set_fix(std::complex<double> &y, double real, double imag, int, q_mode) {y = std::complex<double>(real, imag);}
//! Set <tt>y = x</tt>. Useful in templated code
inline void set_fix(cvec &y, const cvec &x, int) {y = x;}
//! Set <tt>y = real + i*imag</tt>. Useful in templated code
inline void set_fix(cvec &y, const vec &real, const vec &imag, int) {y = to_cvec(real, imag);}
//! Set <tt>y = x</tt>. Useful in templated code
inline void set_fix(cvec &y, const cvec &x, int, q_mode) {y = x;}
//! Set <tt>y = real + i*imag</tt>. Useful in templated code
inline void set_fix(cvec &y, const vec &real, const vec &imag, int, q_mode) {y = to_cvec(real, imag);}
//! Set <tt>y = x</tt>. Useful in templated code
inline void set_fix(cmat &y, const cmat &x, int) {y = x;}
//! Set <tt>y = real + i*imag</tt>. Useful in templated code
inline void set_fix(cmat &y, const mat &real, const mat &imag, int) {y = to_cmat(real, imag);}
//! Set <tt>y = x</tt>. Useful in templated code
inline void set_fix(cmat &y, const cmat &x, int, q_mode) {y = x;}
//! Set <tt>y = real + i*imag</tt>. Useful in templated code
inline void set_fix(cmat &y, const mat &real, const mat &imag, int, q_mode) {y = to_cmat(real, imag);}
//! Call set_fix for each Array element
template<class T1, class T2> inline void set_fix(Array<T1> &y, const Array<T2> &x, int n)
{
y.set_size(x.size());
for (int i = 0; i < y.size(); i++) set_fix(y(i), x(i), n);
}
//! Call set_fix for each Array element
template<class T1, class T2> inline void set_fix(Array<T1> &y, const Array<T2> &real, const Array<T2> &imag, int n)
{
it_assert_debug(real.size() == imag.size(), "set_fix: real and imag should have the same size");
y.set_size(real.size());
for (int i = 0; i < y.size(); i++) set_fix(y(i), real(i), imag(i), n);
}
//! Call set_fix for each Array element
template<class T1, class T2> inline void set_fix(Array<T1> &y, const Array<T2> &x, int n, q_mode q)
{
y.set_size(x.size());
for (int i = 0; i < y.size(); i++) set_fix(y(i), x(i), n, q);
}
//! Call set_fix for each Array element
template<class T1, class T2> inline void set_fix(Array<T1> &y, const Array<T2> &real, const Array<T2> &imag, int n, q_mode q)
{
it_assert_debug(real.size() == imag.size(), "set_fix: real and imag should have the same size");
y.set_size(real.size());
for (int i = 0; i < y.size(); i++) set_fix(y(i), real(i), imag(i), n, q);
}
//! Left shift \c n bits
inline void lshift_fix(Fix &y, int n) {y.lshift(n);}
//! Right shift \c n bits using the quantization mode of \c y
inline void rshift_fix(Fix &y, int n) {y.rshift(n);}
//! Right shift \c n bits using the specified quantization mode \c q
inline void rshift_fix(Fix &y, int n, q_mode q) {y.rshift(n, q);}
//! Left shift \c n bits
inline void lshift_fix(fixvec &y, int n)
{for(int i = 0; i < y.size(); i++) y(i).lshift(n);}
//! Right shift \c n bits using the quantization mode of \c y
inline void rshift_fix(fixvec &y, int n)
{for(int i = 0; i < y.size(); i++) y(i).rshift(n);}
//! Right shift \c n bits using the specified quantization mode \c q
inline void rshift_fix(fixvec &y, int n, q_mode q)
{for(int i = 0; i < y.size(); i++) y(i).rshift(n, q);}
//! Left shift \c n bits
inline void lshift_fix(fixmat &y, int n)
{for(int i = 0; i < y.size(); i++) y(i).lshift(n);}
//! Right shift \c n bits using the quantization mode of \c y
inline void rshift_fix(fixmat &y, int n)
{for(int i = 0; i < y.size(); i++) y(i).rshift(n);}
//! Right shift \c n bits using the specified quantization mode \c q
inline void rshift_fix(fixmat &y, int n, q_mode q)
{for(int i = 0; i < y.size(); i++) y(i).rshift(n, q);}
//! Dummy function useful in templated code
inline void lshift_fix(double &, int) {}
//! Dummy function useful in templated code
inline void rshift_fix(double &, int) {}
//! Dummy function useful in templated code
inline void rshift_fix(double &, int, q_mode) {}
//! Dummy function useful in templated code
inline void lshift_fix(vec &, int) {}
//! Dummy function useful in templated code
inline void rshift_fix(vec &, int) {}
//! Dummy function useful in templated code
inline void rshift_fix(vec &, int, q_mode) {}
//! Dummy function useful in templated code
inline void lshift_fix(mat &, int) {}
//! Dummy function useful in templated code
inline void rshift_fix(mat &, int) {}
//! Dummy function useful in templated code
inline void rshift_fix(mat &, int, q_mode) {}
//! Left shift \c n bits
inline void lshift_fix(CFix &y, int n) {y.lshift(n);}
//! Right shift \c n bits using the quantization mode of \c y
inline void rshift_fix(CFix &y, int n) {y.rshift(n);}
//! Right shift \c n bits using the specified quantization mode \c q
inline void rshift_fix(CFix &y, int n, q_mode q) {y.rshift(n, q);}
//! Left shift \c n bits
inline void lshift_fix(cfixvec &y, int n)
{for(int i = 0; i < y.size(); i++) y(i).lshift(n);}
//! Right shift \c n bits using the quantization mode of \c y
inline void rshift_fix(cfixvec &y, int n)
{for(int i = 0; i < y.size(); i++) y(i).rshift(n);}
//! Right shift \c n bits using the specified quantization mode \c q
inline void rshift_fix(cfixvec &y, int n, q_mode q)
{for(int i = 0; i < y.size(); i++) y(i).rshift(n, q);}
//! Left shift \c n bits
inline void lshift_fix(cfixmat &y, int n)
{for(int i = 0; i < y.size(); i++) y(i).lshift(n);}
//! Right shift \c n bits using the quantization mode of \c y
inline void rshift_fix(cfixmat &y, int n)
{for(int i = 0; i < y.size(); i++) y(i).rshift(n);}
//! Right shift \c n bits using the specified quantization mode \c q
inline void rshift_fix(cfixmat &y, int n, q_mode q)
{for(int i = 0; i < y.size(); i++) y(i).rshift(n, q);}
//! Dummy function useful in templated code
inline void lshift_fix(std::complex<double> &, int) {}
//! Dummy function useful in templated code
inline void rshift_fix(std::complex<double> &, int) {}
//! Dummy function useful in templated code
inline void rshift_fix(std::complex<double> &, int, q_mode) {}
//! Dummy function useful in templated code
inline void lshift_fix(cvec &, int) {}
//! Dummy function useful in templated code
inline void rshift_fix(cvec &, int) {}
//! Dummy function useful in templated code
inline void rshift_fix(cvec &, int, q_mode) {}
//! Dummy function useful in templated code
inline void lshift_fix(cmat &, int) {}
//! Dummy function useful in templated code
inline void rshift_fix(cmat &, int) {}
//! Dummy function useful in templated code
inline void rshift_fix(cmat &, int, q_mode) {}
//! Call lshift_fix for each Array element
template<class T> inline void lshift_fix(Array<T> &y, int n)
{for(int i = 0; i < y.size(); i++) lshift_fix(y(i), n);}
//! Call rshift_fix for each Array element
template<class T> inline void rshift_fix(Array<T> &y, int n)
{for(int i = 0; i < y.size(); i++) rshift_fix(y(i), n);}
//! Call rshift_fix for each Array element
template<class T> inline void rshift_fix(Array<T> &y, int n, q_mode q)
{for(int i = 0; i < y.size(); i++) rshift_fix(y(i), n, q);}
//! If x is a fixed-point variable, assert that x has the specified shift value, otherwise do nothing
inline void assert_fixshift(double, int) {}
//! If x is a fixed-point variable, assert that x has the specified shift value, otherwise do nothing
inline void assert_fixshift(const std::complex<double> &, int) {}
//! If x is a fixed-point variable, assert that x has the specified shift value, otherwise do nothing
inline void assert_fixshift(const Fix &x, int shift)
{it_assert_debug(x.get_shift() == shift, "Shift should be " + to_str(shift) + " but it is " + to_str(x.get_shift()) + ".");}
//! If x is a fixed-point variable, assert that x has the specified shift value, otherwise do nothing
inline void assert_fixshift(const CFix &x, int shift)
{it_assert_debug(x.get_shift() == shift, "Shift should be " + to_str(shift) + " but it is " + to_str(x.get_shift()) + ".");}
//! Converts a fixvec to vec
ITPP_EXPORT vec to_vec(const fixvec &v);
//! Converts a cfixvec to cvec
ITPP_EXPORT cvec to_cvec(const cfixvec &v);
//! Converts a fixmat to mat
ITPP_EXPORT mat to_mat(const fixmat &m);
//! Converts a cfixmat to cmat
ITPP_EXPORT cmat to_cmat(const cfixmat &m);
//! \cond
//! Help class used by the conversion function to<T>(const Array<...> &x). To be merged with Convert?
template<class T, class U>
class ConvertU2T
{
public:
typedef T result;
};
//! Template specialization for Array<T>
template<class T, class U>
class ConvertU2T<T, Array<U> >
{
public:
typedef Array<typename ConvertU2T<T, U>::result> result; // Recursive
};
//! Template specialization for Vec<T>
template<class T, class U>
class ConvertU2T<T, Vec<U> >
{
public:
typedef Vec<T> result;
};
//! Template specialization for Mat<T>
template<class T, class U>
class ConvertU2T<T, Mat<U> >
{
public:
typedef Mat<T> result;
};
//! \endcond
//! Convert double to T
template<class T> inline T to(double x) {return T(x);}
//! Convert Fix to T
template<class T> inline T to(const Fix &x) {return T(x);}
//! Convert std::complex<double> to T
template<class T> inline T to(const std::complex<double> &x) {return T(x);}
//! Convert CFix to T
template<class T> inline T to(const CFix &x) {return T(x);}
//! Convert double (real and imaginary parts) to T
template<class T> inline T to(double real, double imag) {return T(real, imag);}
//! Convert Fix (real and imaginary parts) to T
template<class T> inline T to(const Fix &real, const Fix &imag) {return T(real, imag);}
//! Convert Vec<U> to Vec<T>
template<class T, class U> Vec<T> to(const Vec<U> &x)
{
Vec<T> y(x.length());
for (int i = 0; i < x.length(); i++) {
y(i) = T(x(i));
}
return y;
}
//! Convert vec to vec
template<> inline vec to<double>(const vec &x) {return x;}
//! Convert cvec to cvec
template<> inline cvec to<std::complex<double> >(const cvec &x) {return x;}
//! Convert fixvec to fixvec
template<> inline fixvec to<Fix>(const fixvec &x) {return x;}
//! Convert cfixvec to cfixvec
template<> inline cfixvec to<CFix>(const cfixvec &x) {return x;}
//! Convert Vec<U> (real and imaginary parts) to Vec<T>
template<class T, class U> Vec<T> to(const Vec<U> &real, const Vec<U> &imag)
{
it_assert_debug(real.length() == imag.length(), "to: real and imag should have the same size");
Vec<T> y(real.length());
for (int i = 0; i < real.length(); i++) {
y(i) = T(real(i), imag(i));
}
return y;
}
//! Convert Mat<U> to Mat<T>
template<class T, class U> Mat<T> to(const Mat<U> &x)
{
Mat<T> y(x.rows(), x.cols());
for (int i = 0; i < x.rows(); i++) {
for (int j = 0; j < x.cols(); j++) {
y(i, j) = T(x(i, j));
}
}
return y;
}
//! Convert mat to mat
template<> inline mat to<double>(const mat &x) {return x;}
//! Convert cmat to cmat
template<> inline cmat to<std::complex<double> >(const cmat &x) {return x;}
//! Convert fixmat to fixmat
template<> inline fixmat to<Fix>(const fixmat &x) {return x;}
//! Convert cfixmat to cfixmat
template<> inline cfixmat to<CFix>(const cfixmat &x) {return x;}
//! Convert Mat<U> (real and imaginary parts) to Mat<T>
template<class T, class U> Mat<T> to(const Mat<U> &real, const Mat<U> &imag)
{
it_assert_debug(real.rows() == imag.rows() && real.cols() == imag.cols(), "to: real and imag should have the same size");
Mat<T> y(real.rows(), real.cols());
for (int i = 0; i < real.rows(); i++) {
for (int j = 0; j < real.cols(); j++) {
y(i, j) = T(real(i, j), imag(i, j));
}
}
return y;
}
//! Convert Array<U>, where U can be an Array/Vec/Mat, to a corresponding Array with T elements
template<class T, class U>
Array<typename ConvertU2T<T, U>::result> to(const Array<U> &x)
{
Array<typename ConvertU2T<T, U>::result> y(x.size());
for (int i = 0; i < x.size(); i++) {
y(i) = to<T>(x(i));
}
return y;
}
//! Convert Array<U> (real and imaginary parts), where U can be an Array/Vec/Mat, to a corresponding Array with T elements
template<class T, class U>
Array<typename ConvertU2T<T, U>::result> to(const Array<U> &real, const Array<U> &imag)
{
it_assert_debug(real.size() == imag.size(), "to: real and imag should have the same size");
Array<typename ConvertU2T<T, U>::result> y(real.size());
for (int i = 0; i < real.size(); i++) {
y(i) = to<T>(real(i), imag(i));
}
return y;
}
//! Convert Fix to double by multiplying the bit representation with pow2(-shift)
inline double unfix(const Fix &x) {return x.unfix();}
//! Convert CFix to std::complex<double> by multiplying the bit representation with pow2(-shift)
inline std::complex<double> unfix(const CFix &x) {return x.unfix();}
//! Convert fixvec to vec by multiplying the bit representations with pow2(-shift)
inline vec unfix(const fixvec &x) {return to_vec(x);}
//! Convert cfixvec to cvec by multiplying the bit representations with pow2(-shift)
inline cvec unfix(const cfixvec &x) {return to_cvec(x);}
//! Convert fixmat to mat by multiplying the bit representations with pow2(-shift)
inline mat unfix(const fixmat &x) {return to_mat(x);}
//! Convert cfixmat to cmat by multiplying the bit representations with pow2(-shift)
inline cmat unfix(const cfixmat &x) {return to_cmat(x);}
//! Convert double to double i.e. do nothing
inline double unfix(double x) {return x;}
//! Convert std::complex<double> to std::complex<double> i.e. do nothing
inline std::complex<double> unfix(const std::complex<double> &x) {return x;}
//! Convert vec to vec i.e. do nothing
inline vec unfix(const vec &x) {return x;}
//! Convert cvec to cvec i.e. do nothing
inline cvec unfix(const cvec &x) {return x;}
//! Convert mat to mat i.e. do nothing
inline mat unfix(const mat &x) {return x;}
//! Convert cmat to cmat i.e. do nothing
inline cmat unfix(const cmat &x) {return x;}
//! \cond
//! Help class used by the conversion function unfix(const Array<T> &x)
template<class T>
class Convert
{
public:
typedef double to_double;
};
//! Template specialization for CFix
template<>
class Convert<CFix>
{
public:
typedef std::complex<double> to_double;
};
//! Template specialization for std::complex<T>
template<class T>
class Convert<std::complex<T> >
{
public:
typedef std::complex<double> to_double;
};
//! Template specialization for Array<T>
template<class T>
class Convert<Array<T> >
{
public:
typedef Array<typename Convert<T>::to_double> to_double; // Recursive
};
//! Template specialization for Vec<T>
template<class T>
class Convert<Vec<T> >
{
public:
typedef Vec<typename Convert<T>::to_double> to_double; // Recursive
};
//! Template specialization for Mat<T>
template<class T>
class Convert<Mat<T> >
{
public:
typedef Mat<typename Convert<T>::to_double> to_double; // Recursive
};
//! \endcond
//! Convert floating- or fixed-point Array to floating-point Array
template<class T>
Array<typename Convert<T>::to_double> unfix(const Array<T> &x)
{
Array<typename Convert<T>::to_double> y(x.size());
for (int i = 0; i < x.size(); i++) {
y(i) = unfix(x(i));
}
return y;
}
//! Absolute value
ITPP_EXPORT Fix abs(const Fix &x);
//! Real part of complex value
ITPP_EXPORT Fix real(const CFix &x);
//! Imaginary part of complex value
ITPP_EXPORT Fix imag(const CFix &x);
//! Conjugate of complex value
ITPP_EXPORT CFix conj(const CFix &x);
//!@}
} // namespace itpp
#endif // #ifndef FIX_FUNCTIONS_H
|