This file is indexed.

/usr/include/jellyfish/large_hash_array.hpp is in libjellyfish-2.0-dev 2.2.4-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
/*  This file is part of Jellyfish.

    Jellyfish is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    Jellyfish is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with Jellyfish.  If not, see <http://www.gnu.org/licenses/>.
*/

#ifndef __JELLYFISH_LARGE_HASH_ARRAY_HPP__
#define __JELLYFISH_LARGE_HASH_ARRAY_HPP__

#include <jellyfish/storage.hpp>
#include <jellyfish/atomic_gcc.hpp>
#include <jellyfish/allocators_mmap.hpp>
#include <jellyfish/offsets_key_value.hpp>
#include <jellyfish/misc.hpp>
#include <jellyfish/err.hpp>
#include <jellyfish/mer_dna.hpp>
#include <jellyfish/rectangular_binary_matrix.hpp>
#include <jellyfish/simple_circular_buffer.hpp>
#include <jellyfish/large_hash_iterator.hpp>

namespace jellyfish { namespace large_hash {
/* Contains an integer, the reprobe limit. It is capped based on the
 * reprobe strategy to not be bigger than the size of the hash
 * array. Also, the length to encode reprobe limit must not be larger
 * than the length to encode _size.
 */
class reprobe_limit_t {
  uint_t limit;
public:
  reprobe_limit_t(uint_t _limit, const size_t *_reprobes, size_t _size) :
    limit(_limit)
  {
    while(_reprobes[limit] >= _size && limit >= 1)
      limit--;
  }
  inline uint_t val() const { return limit; }
};

// Key is any type with the following two methods: get_bits(unsigned
// int start, unsigned int len); and set_bits(unsigned int start,
// unsigned int len, uint64_t bits). These methods get and set the
// bits [start, start + len). Start and len may not be aligned to word
// boundaries. On the other hand, len is guaranteed to be <
// sizeof(uint64_t). I.e. never more than 1 word is fetched or set.
template<typename Key, typename word, typename atomic_t, typename Derived>
class array_base {
  static const int  wsize = std::numeric_limits<word>::digits; // Word size in bits
  // Can't be done. Resort to an evil macro!
  //  static const word fmask = std::numeric_limits<word>::max(); // Mask full of ones
#define fmask (std::numeric_limits<word>::max())

public:
  define_error_class(ErrorAllocation);

  typedef word                             data_word;
  typedef typename Offsets<word>::offset_t offset_t;
  typedef struct offset_t::key             key_offsets;
  typedef struct offset_t::val             val_offsets;

  typedef Key key_type;
  typedef uint64_t                      mapped_type;
  typedef std::pair<Key&, mapped_type>  value_type;
  typedef stl_iterator_base<array_base> iterator;
  typedef stl_iterator_base<array_base> const_iterator;
  typedef value_type&                   reference;
  typedef const value_type&             const_reference;
  typedef value_type*                   pointer;
  typedef const value_type*             const_pointer;

  typedef eager_iterator_base<array_base>  eager_iterator;
  typedef lazy_iterator_base<array_base>   lazy_iterator;
  typedef region_iterator_base<array_base> region_iterator;

  /// Status of a (key,value) pair. LBSET means that the large bit is
  /// set. Hence, it contains a pointer back to the original key and a
  /// large value.
  enum key_status { FILLED, EMPTY, LBSET};

protected:
  uint16_t                 lsize_; // log of size
  size_t                   size_, size_mask_;
  reprobe_limit_t          reprobe_limit_;
  uint16_t                 key_len_; // Length of key in bits
  uint16_t                 raw_key_len_; // Length of key stored raw (i.e. complement of implied length)
  Offsets<word>            offsets_; // key len reduced by size of hash array
  size_t                   size_bytes_;
  word * const             data_;
  atomic_t                 atomic_;
  const size_t            *reprobes_;
  RectangularBinaryMatrix  hash_matrix_;
  RectangularBinaryMatrix  hash_inverse_matrix_;

public:
  /// Give information about memory usage and array size.
  struct usage_info {
    uint16_t      key_len_, val_len_, reprobe_limit_;
    const size_t* reprobes_;

    usage_info(uint16_t key_len, uint16_t val_len, uint16_t reprobe_limit,
               const size_t* reprobes = jellyfish::quadratic_reprobes) :
      key_len_(key_len), val_len_(val_len), reprobe_limit_(reprobe_limit), reprobes_(reprobes) { }

    /// Memory usage for a given size.
    size_t mem(size_t size) {
      uint16_t lsize(ceilLog2(size));
      size_t asize((size_t)1 << lsize);
      reprobe_limit_t areprobe_limit(reprobe_limit_, reprobes_, asize);
      uint16_t raw_key_len(key_len_ > lsize ? key_len_ - lsize : 0);
      Offsets<word> offsets(raw_key_len + bitsize(areprobe_limit.val() + 1), val_len_,
                            areprobe_limit.val() + 1);
      return div_ceil(asize,
                      (size_t)offsets.block_len()) * offsets.block_word_len() * sizeof(word) + sizeof(array_base) + sizeof(Offsets<word>);
    }

    /// Actual size for a given size.
    size_t asize(size_t size) { return (size_t)1 << ceilLog2(size); }

    struct fit_in {
      usage_info* i_;
      size_t      mem_;
      fit_in(usage_info* i, size_t mem) : i_(i), mem_(mem) { }
      bool operator()(uint16_t size_bits) const { return i_->mem((size_t)1 << size_bits) < mem_; }
    };

    /// Maximum size for a given maximum memory.
    size_t size(size_t mem) { return (size_t)1 << size_bits(mem); }

    /// Log of maximum size for a given maximum memory
    uint16_t size_bits(size_t mem) {
      uint16_t res = *binary_search_first_false(pointer_integer<uint16_t>(0), pointer_integer<uint16_t>(64),
                                              fit_in(this, mem));
      return res > 0 ? res - 1 : 0;
    }

    size_t size_bits_linear(size_t mem) {
      fit_in predicate(this, mem);
      uint16_t i = 0;
      for( ; i < 64; ++i)
        if(!predicate(i))
           break;

      return i > 0 ? i - 1 : 0;
    }

  };


  array_base(size_t size, // Size of hash. To be rounded up to a power of 2
             uint16_t key_len, // Size of key in bits
             uint16_t val_len, // Size of val in bits
             uint16_t reprobe_limit, // Maximum reprobe
             RectangularBinaryMatrix m,
             const size_t* reprobes = quadratic_reprobes) : // Reprobing policy
    lsize_(ceilLog2(size)),
    size_((size_t)1 << lsize_),
    size_mask_(size_ - 1),
    reprobe_limit_(reprobe_limit, reprobes, size_),
    key_len_(key_len),
    raw_key_len_(key_len_ > lsize_ ? key_len_ - lsize_ : 0),
    offsets_(raw_key_len_ + bitsize(reprobe_limit_.val() + 1), val_len, reprobe_limit_.val() + 1),
    size_bytes_(div_ceil(size_, (size_t)offsets_.block_len()) * offsets_.block_word_len() * sizeof(word)),
    data_(static_cast<Derived*>(this)->alloc_data(size_bytes_)),
    reprobes_(reprobes),
    hash_matrix_(m),
    hash_inverse_matrix_(hash_matrix_.pseudo_inverse())
  {
    if(!data_)
      throw ErrorAllocation(err::msg() << "Failed to allocate "
                            << (div_ceil(size, (size_t)offsets_.block_len()) * offsets_.block_word_len() * sizeof(word))
                            << " bytes of memory");
  }

  array_base(array_base&& ary) :
    lsize_(ary.lsize_),
    size_(ary.size_),
    size_mask_(size_ - 1),
    reprobe_limit_(ary.reprobe_limit_),
    key_len_(ary.key_len_),
    raw_key_len_(ary.raw_key_len_),
    offsets_(std::move(ary.offsets_)),
    size_bytes_(ary.size_bytes_),
    data_(ary.data_),
    reprobes_(ary.reprobes_),
    hash_matrix_(std::move(ary.hash_matrix_)),
    hash_inverse_matrix_(std::move(ary.hash_inverse_matrix_))
  { }

  array_base& operator=(const array_base& rhs) = delete;
  array_base& operator=(array_base&& rhs) = delete;

  size_t size() const { return size_; }
  size_t lsize() const { return lsize_; }
  size_t size_mask() const { return size_mask_; }
  uint_t key_len() const { return key_len_; }
  uint_t val_len() const { return offsets_.val_len(); }

  const size_t* reprobes() const { return reprobes_; }
  uint_t max_reprobe() const { return reprobe_limit_.val(); }
  size_t max_reprobe_offset() const { return reprobes_[reprobe_limit_.val()]; }

  const RectangularBinaryMatrix& matrix() const { return hash_matrix_; }
  const RectangularBinaryMatrix& inverse_matrix() const { return hash_inverse_matrix_; }
  void matrix(const RectangularBinaryMatrix& m) {
    hash_inverse_matrix_ = m.pseudo_inverse();
    hash_matrix_         = m;
  }

  /**
   * Clear hash table. Not thread safe.
   */
  void clear() {
    memset(data_, '\0', size_bytes_);
  }

  /**
   * Write the hash table raw to a stream. Not thread safe.
   */
  void write(std::ostream& os) const {
    os.write((const char*)data_, size_bytes_);
  }

  size_t size_bytes() const { return size_bytes_; }

  /* The storage of the hash is organized in "blocks". A (key,value)
   * pair always start at bit 0 of the block. The following methods
   * work with the blocks of the hash.
   */

  /**
   * Number of blocks needed to fit at least a given number of
   * records. Given a number of records, it returns the number of
   * blocks necessary and the actual number of records these blocks
   * contain.
   */
  std::pair<size_t, size_t> blocks_for_records(size_t nb_records) const {
    return offsets_.blocks_for_records(nb_records);
  }


  /**
   * Convert coordinate from (start, blen) given in blocks to
   * coordinate in char* and length in bytes. It also makes sure that
   * the pointer and length returned do not go beyond allocated
   * memory.
   */
  void block_to_ptr(const size_t start, const size_t blen,
                    char **start_ptr, size_t *memlen) const {
    *start_ptr    = (char *)(data_ + start * offsets_.block_word_len());
    char *end_ptr = (char *)data_ + size_bytes_;

    if(*start_ptr >= end_ptr) {
      *memlen = 0;
      return;
    }
    *memlen = blen * offsets_.block_word_len() * sizeof(word);
    if(*start_ptr + *memlen > end_ptr)
      *memlen = end_ptr - *start_ptr;
  }

  /**
   * Zero out blocks in [start, start+length), where start and
   * length are given in number of blocks.
   **/
  void zero_blocks(const size_t start, const size_t length) {
    char   *start_ptr;
    size_t  memlen;
    block_to_ptr(start, length, &start_ptr, &memlen);
    memset(start_ptr, '\0', memlen);
  }


  /**
   * Use hash values as counters.
   *
   * The matrix multiplication gets only a uint64_t. The lsb of the
   * matrix product, the hsb are assume to be equal to the key itself
   * (the matrix has a partial identity on the first rows).
   *
   * In case of failure (false is returned), carry_shift contains the
   * number of bits of the value that were successfully stored in the
   * hash (low significant bits). If carry_shift == 0, then nothing
   * was stored and the key is not in the hash at all. In that case,
   * the value of *is_new and *id are not valid. If carry_shift > 0,
   * then the key is present but the value stored is not correct
   * (missing the high significant bits of value), but *is_new and *id
   * contain the proper information.
   */
  inline bool add(const key_type& key, mapped_type val, unsigned int* carry_shift, bool* is_new, size_t* id) {
    uint64_t hash = hash_matrix_.times(key);
    *carry_shift  = 0;
    return add_rec(hash & size_mask_, key, val, false, is_new, id, carry_shift);
  }

  inline bool add(const key_type& key, mapped_type val, unsigned int* carry_shift) {
    bool   is_new = false;
    size_t id     = 0;
    return add(key, val, carry_shift, &is_new, &id);
  }

  inline bool add(const key_type& key, mapped_type val) {
    unsigned int carry_shift = 0;
    return add(key, val, &carry_shift);
  }

  inline bool set(const key_type& key) {
    bool   is_new;
    size_t id;
    return set(key, &is_new, &id);
  }
  bool set(const key_type& key, bool* is_new, size_t* id) {
    word*           w;
    const offset_t* o;

    *id = hash_matrix_.times(key) & size_mask_;
    return claim_key(key, is_new, id, &o, &w);
  }

  /**
   * Use hash values as counters, if already exists
   *
   * Add val to the value associated with key if key is already in the
   * hash. Returns true if the update was done, false otherwise.
   */
  inline bool update_add(const key_type& key, mapped_type val) {
    key_type     tmp_key;
    unsigned int carry_shift;
    return update_add(key, val, &carry_shift, tmp_key);
  }


  // Optimization. Use tmp_key as buffer. Avoids allocation if update_add is called repeatedly.
  bool update_add(const key_type& key, mapped_type val, unsigned int* carry_shift, key_type& tmp_key) {
    size_t          id;
    word*           w;
    const offset_t* o;
    *carry_shift = 0;

    if(get_key_id(key, &id, tmp_key, (const word**)&w, &o))
      return add_rec_at(id, key, val, o, w, carry_shift);
    return false;
  }

  // Get the value, stored in *val, associated with key. If the key is
  // not found, false is returned, otherwise true is returned and *val
  // is updated. If carry_bit is true, then the first bit of the key
  // field indicates whether we should reprobe to get the complete
  // value.
  inline bool get_val_for_key(const key_type& key, mapped_type* val, bool carry_bit = false) const {
    key_type tmp_key;
    size_t   id;
    return get_val_for_key(key, val, tmp_key, &id, carry_bit);
  }

  // Optimization version. A tmp_key buffer is passed and the id where
  // the key was found is return in *id. If get_val_for_key is called
  // many times consecutively, it may be faster to pass the same
  // tmp_key buffer instead of allocating it every time.
  bool get_val_for_key(const key_type& key, mapped_type* val, key_type& tmp_key,
                       size_t* id, bool carry_bit = false) const {
    const word*     w;
    const offset_t* o;
    if(!get_key_id(key, id, tmp_key, &w, &o))
      return false;
    *val = get_val_at_id(*id, w, o, true, carry_bit);
    return true;
  }

  // Return true if the key is present in the hash
  inline bool has_key(const key_type& key) const {
    size_t id;
    return get_key_id(key, &id);
  }

  // Get the id of the key in the hash. Returns true if the key is
  // found in the hash, false otherwise.
  inline bool get_key_id(const key_type& key, size_t* id) const {
    key_type        tmp_key;
    const word*     w;
    const offset_t* o;
    return get_key_id(key, id, tmp_key, &w, &o);
  }

  // Optimization version where a tmp_key buffer is provided instead
  // of being allocated. May be faster if many calls to get_key_id are
  // made consecutively by passing the same tmp_key each time.
  inline bool get_key_id(const key_type& key, size_t* id, key_type& tmp_key) const {
    const word*     w;
    const offset_t* o;
    return get_key_id(key, id, tmp_key, &w, &o);
  }

protected:
  // Information and methods to manage the prefetched data.
  struct prefetch_info {
    size_t          id;
    const word*     w;
    const offset_t *o, *lo;
  };
  typedef simple_circular_buffer::pre_alloc<prefetch_info, 8> prefetch_buffer;

  void warm_up_cache(prefetch_buffer& buffer, size_t oid) const {
    buffer.clear();
    for(int i = 0; i < buffer.capacity(); ++i) {
      buffer.push_back();
      prefetch_info& info = buffer.back();
      info.id             = (oid + (i > 0 ? reprobes_[i] : 0)) & size_mask_;
      info.w              = offsets_.word_offset(info.id, &info.o, &info.lo, data_);
      __builtin_prefetch(info.w + info.o->key.woff, 0, 1);
      __builtin_prefetch(info.o, 0, 3);
    }
  }

  void prefetch_next(prefetch_buffer& buffer, size_t oid, uint_t reprobe) const {
    buffer.pop_front();
    //    if(reprobe + buffer.capacity() <= reprobe_limit_.val()) {
      buffer.push_back();
      prefetch_info& info = buffer.back();
      info.id             = (oid + reprobes_[reprobe + buffer.capacity() - 1]) & size_mask_;
      info.w              = offsets_.word_offset(info.id, &info.o, &info.lo, data_);
      __builtin_prefetch(info.w + info.o->key.woff, 0, 1);
      __builtin_prefetch(info.o, 0, 3);
      //    }
  }

public:
  // Optimization version again. Also return the word and the offset
  // information where the key was found. These can be used later one
  // to fetch the value associated with the key.
  inline bool get_key_id(const key_type& key, size_t* id, key_type& tmp_key, const word** w, const offset_t** o) const {
    return get_key_id(key, id, tmp_key, w, o, hash_matrix_.times(key) & size_mask_);
  }

  // Find the actual id of the key in the hash, starting at oid.
  bool get_key_id(const key_type& key, size_t* id, key_type& tmp_key, const word** w, const offset_t** o, const size_t oid) const {
    // This static_assert makes clang++ happy
    static_assert(std::is_pod<prefetch_info>::value, "prefetch_info must be a POD");
    prefetch_info info_ary[prefetch_buffer::capacityConstant];
    prefetch_buffer buffer(info_ary);
    warm_up_cache(buffer, oid);

    for(uint_t reprobe = 0; reprobe <= reprobe_limit_.val(); ++reprobe) {
      prefetch_info& info = buffer.front();
      key_status st       = get_key_at_id(info.id, tmp_key, info.w, info.o);

      switch(st) {
      case EMPTY:
        return false;
      case FILLED:
        if(oid != tmp_key.get_bits(0, lsize_))
          break;
        tmp_key.template set_bits<false>(0, lsize_, key.get_bits(0, lsize_));
        if(tmp_key != key)
          break;
        *id = info.id;
        *w  = info.w;
        *o  = info.o;
        return true;
      default:
        break;
      }

      prefetch_next(buffer, oid, reprobe + 1);
    } // for

    return false;
  }

  //////////////////////////////
  // Iterator
  //////////////////////////////
  const_iterator begin() { return const_iterator(this); }
  const_iterator begin() const { return const_iterator(this); }
  const_iterator end() { return const_iterator(); }
  const_iterator end() const { return const_iterator(); }

/// Get a slice of an array as an iterator
  template<typename Iterator>
  Iterator iterator_slice(size_t index, size_t nb_slices) const {
    std::pair<size_t, size_t> res = slice(index, nb_slices, size());
    return Iterator(this, res.first, res.second);
  }

  template<typename Iterator>
  Iterator iterator_all() const { return iterator_slice<Iterator>(0, 1); }

  // See hash_counter.hpp for why we added this method. It should not
  // be needed, but I can't get the thing to compile without :(.
  eager_iterator eager_slice(size_t index, size_t nb_slices) const {
    return iterator_slice<eager_iterator>(index, nb_slices);
  }
  region_iterator region_slice(size_t index, size_t nb_slices) const {
    return iterator_slice<region_iterator>(index, nb_slices);
  }

  // Claim a key with the large bit not set. I.e. first entry for a key.
  //
  // id is input/output. Equal to hash & size_maks on input. Equal to
  // actual id where key was set on output. key is already hash
  // shifted and masked to get higher bits. (>> lsize & key_mask)
  // is_new is set on output to true if key did not exists in hash
  // before. *ao points to the actual offsets object and w to the word
  // holding the value.
  bool claim_key(const key_type& key, bool* is_new, size_t* id, const offset_t** _ao, word** _w) {
    uint_t	    reprobe        = 0;
    const offset_t *o, *lo;
    word	   *w, *kw, nkey;
    bool	    key_claimed    = false;
    size_t	    cid            = *id;

    // Akey contains first word of what to store in the key
    // field. I.e. part of the original key (the rest is encoded in
    // the original position) and the reprobe value to substract from
    // the actual position to get to the original position.
    //
    //    MSB                     LSB
    //   +--------------+-------------+
    //   |  MSB of key  |  reprobe    |
    //   + -------------+-------------+
    //     raw_key_len    reprobe_len
    //
    // Akey is updated at every operation to reflect the current
    // reprobe value. nkey is the temporary word containing the part
    // to be stored in the current word kw (+ some offset).
    word      akey          = 1; // start reprobe value == 0. Store reprobe value + 1
    const int to_copy       = std::min((uint16_t)(wsize - offsets_.reprobe_len()), raw_key_len_);
    const int implied_copy  = std::min(key_len_, lsize_);
    akey                   |= key.get_bits(implied_copy, to_copy) << offsets_.reprobe_len();
    const int abits_copied  = implied_copy + to_copy; // Bits from original key already copied, explicitly or implicitly

    do {
      int bits_copied = abits_copied;

      w  = offsets_.word_offset(cid, &o, &lo, data_);
      kw = w + o->key.woff;

      if(o->key.sb_mask1) { // key split on multiple words
        nkey = akey << o->key.boff;
        nkey |= o->key.sb_mask1;
        nkey &= o->key.mask1;

        key_claimed = set_key(kw, nkey, o->key.mask1, o->key.mask1, is_new);
        if(key_claimed) {
          nkey = akey >> o->key.shift;
          if(o->key.full_words) {
            // Copy full words. First one is special
            nkey                  |= key.get_bits(bits_copied, o->key.shift - 1) << (wsize - o->key.shift);
            bits_copied           += o->key.shift - 1;
            nkey                  |= o->key.sb_mask1; // Set bit is MSB
            int copied_full_words  = 1;
            key_claimed            = set_key(kw + copied_full_words, nkey, fmask, fmask, is_new);
            // Copy more full words if needed
            while(bits_copied + wsize - 1 <= key_len_ && key_claimed) {
              nkey               = key.get_bits(bits_copied, wsize - 1);
              bits_copied       += wsize - 1;
              nkey              |= o->key.sb_mask1;
              copied_full_words += 1;
              key_claimed        = set_key(kw + copied_full_words, nkey, fmask, fmask, is_new);
            }
            assert(!key_claimed || (bits_copied < key_len_) == (o->key.sb_mask2 != 0));
            if(o->key.sb_mask2 && key_claimed) { // Copy last word
              nkey               = key.get_bits(bits_copied, key_len_ - bits_copied);
              nkey              |= o->key.sb_mask2;
              copied_full_words += 1;
              key_claimed        = set_key(kw + copied_full_words, nkey, o->key.mask2, o->key.mask2, is_new);
            }
          } else if(o->key.sb_mask2) { // if bits_copied + wsize - 1 < key_len
            // Copy last word, no full words copied
            nkey        |= key.get_bits(bits_copied, key_len_ - bits_copied) << (wsize - o->key.shift);
            nkey        |= o->key.sb_mask2;
            nkey        &= o->key.mask2;
            key_claimed  = set_key(kw + 1, nkey, o->key.mask2, o->key.mask2, is_new);
          }
        } // if(key_claimed)
      } else { // key on one word
        nkey = akey << o->key.boff;
        nkey &= o->key.mask1;
        key_claimed = set_key(kw, nkey, o->key.mask1, o->key.mask1, is_new);
      }
      if(!key_claimed) { // reprobe
        if(++reprobe > reprobe_limit_.val())
          return false;
        cid = (*id + reprobes_[reprobe]) & size_mask_;
        akey = (akey & ~offsets_.reprobe_mask()) | (reprobe + 1);
      }
    } while(!key_claimed);

    *id  = cid;
    *_w  = w;
    *_ao = o;
    return true;
  }

  // Claim large key. Enter an entry for a key when it is not the
  // first entry. Only encode the number of reprobe hops back to the
  // first entry of the key in the hash table. It is simpler as can
  // takes less than one word in length.
  bool claim_large_key(size_t* id, const offset_t** _ao, word** _w) {
    uint_t          reprobe     = 0;
    size_t          cid         = *id;
    const offset_t *o, *lo;
    word           *w, *kw, nkey;
    bool            key_claimed = false;

    do {
      w = offsets_.word_offset(cid, &o, &lo, data_);
      kw = w + lo->key.woff;

      if(lo->key.sb_mask1) { // key split on multiple words
        nkey = (reprobe << lo->key.boff) | lo->key.sb_mask1 | lo->key.lb_mask;
        nkey &= lo->key.mask1;

        // Use o->key.mask1 and not lo->key.mask1 as the first one is
        // guaranteed to be bigger. The key needs to be free on its
        // longer mask to claim it!
        key_claimed = set_key(kw, nkey, o->key.mask1, lo->key.mask1);
        if(key_claimed) {
          nkey         = (reprobe >> lo->key.shift) | lo->key.sb_mask2;
          nkey        &= lo->key.mask2;
          key_claimed  = set_key(kw + 1, nkey, o->key.full_words ? fmask : o->key.mask2, lo->key.mask2);
        }
      } else { // key on 1 word
        nkey  = (reprobe << lo->key.boff) | lo->key.lb_mask;
        nkey &= lo->key.mask1;
        key_claimed = set_key(kw, nkey, o->key.mask1, lo->key.mask1);
      }
      if(!key_claimed) { //reprobe
        if(++reprobe > reprobe_limit_.val())
          return false;
        cid  = (*id + reprobes_[reprobe]) & size_mask_;
      }
    } while(!key_claimed);

    *id  = cid;
    *_w  = w;
    *_ao = lo;
    return true;
  }

  // Add val to key. id is the starting place (result of hash
  // computation). eid is set to the effective place in the
  // array. large is set to true is setting a large key (upon
  // recurrence if there is a carry).
  bool add_rec(size_t id, const key_type& key, word val, bool large, bool* is_new, size_t* eid, unsigned int* carry_shift) {
    const offset_t *ao = 0;
    word	   *w  = 0;

    bool claimed = false;
    if(large)
      claimed = claim_large_key(&id, &ao, &w);
    else
      claimed = claim_key(key, is_new, &id, &ao, &w);
    if(!claimed)
      return false;
    *eid = id;
    return add_rec_at(id, key, val, ao, w, carry_shift);
  }

  bool add_rec_at(size_t id, const key_type& key, word val, const offset_t* ao, word* w, unsigned int* carry_shift) {
    // Increment value
    word *vw       = w + ao->val.woff;
    word  cary     = add_val(vw, val, ao->val.boff, ao->val.mask1);
    cary         >>= ao->val.shift;
    *carry_shift  += ao->val.shift;
    if(cary && ao->val.mask2) { // value split on two words
      cary           = add_val(vw + 1, cary, 0, ao->val.mask2);
      cary         >>= ao->val.cshift;
      *carry_shift  += ao->val.cshift;
    }
    if(!cary)
      return true;

    id = (id + reprobes_[0]) & size_mask_;
    size_t ignore_eid;
    bool   ignore_is_new;
    return add_rec(id, key, cary, true, &ignore_is_new, &ignore_eid, carry_shift);

      // // Adding failed, table is full. Need to back-track and
      // // substract val.
      //      std::cerr << "Failed to add large part of value -> return false\n";
      // cary = add_val(vw, ((word)1 << offsets_.val_len()) - val,
      //                ao->val.boff, ao->val.mask1);
      // cary >>= ao->val.shift;
      // if(cary && ao->val.mask2) {
      //   // Can I ignore the cary here? Table is known to be full, so
      //   // not much of a choice. But does it leave the table in a
      //   // consistent state?
      //   add_val(vw + 1, cary, 0, ao->val.mask2);
      // }
      //      return false;
  }

  // Atomic methods to set the key. Attempt to set nkey in word w. All
  // bits matching free_mask must be unset and the bits matching
  // equal_mask must be equal for a success in setting the key. Set
  // is_new to true if the spot was previously empty. Otherwise, if
  // is_new is false but true is returned, the key was already present
  // at that spot.
  inline bool set_key(word *w, word nkey, word free_mask, word equal_mask, bool *is_new) {
    word ow = *w, nw, okey;

    okey = ow & free_mask;
    while(okey == 0) { // large bit not set && key is free
      nw = atomic_.cas(w, ow, ow | nkey);
      if(nw == ow) {
        *is_new = true;
        return true;
      }
      ow = nw;
      okey = ow & free_mask;
    }
    *is_new = false;
    return (ow & equal_mask) == nkey;
  }

  inline bool set_key(word *w, word nkey, word free_mask, word equal_mask) {
    bool is_new;
    return set_key(w, nkey, free_mask, equal_mask, &is_new);
  }

  // Add val the value in word w, with shift and mask giving the
  // particular part of the word in which the value is stored. The
  // return value is the carry.
  inline word add_val(word *w, word val, uint_t shift, word mask) {
    word now = *w, ow, nw, nval;

    do {
      ow = now;
      nval = ((ow & mask) >> shift) + val;
      nw = (ow & ~mask) | ((nval << shift) & mask);
      now = atomic_.cas(w, ow, nw);
    } while(now != ow);

    return nval & (~(mask >> shift));
  }

  // Return the key and value at position id. If the slot at id is
  // empty or has the large bit set, returns false. Otherwise, returns
  // the key and the value is the sum of all the entries in the hash
  // table for that key. I.e., the table is search forward for entries
  // with large bit set pointing back to the key at id, and all those
  // values are summed up.
  key_status get_key_val_at_id(size_t id, key_type& key, word& val, const bool carry_bit = false) const {
    const word*     w;
    const offset_t* o;

    key_status st = get_key_at_id(id, key, &w, &o);
    if(st != FILLED)
       return st;

    val = get_val_at_id(id, w, o, true, carry_bit);

    return FILLED;
  }

  // Get a the key at the given id. It also returns the word and
  // offset information in w and o. The return value is EMPTY (no key
  // at id), FILLED (there is a key at id), LBSET (the large bit is
  // set, hence the key is only a pointer back to the real key).
  //
  // The key returned contains the original id in the hash as its
  // lsize_ lsb bits. To obtain the full key, one needs to compute the
  // product with the inverse matrix to get the lsb bits.
  inline key_status get_key_at_id(size_t id, key_type& key, const word** w, const offset_t** o) const {
    const offset_t *lo;
    *w = offsets_.word_offset(id, o, &lo, data_);
    return get_key_at_id(id, key, *w, *o);
  }

  // Sam as above, but it assume that the word w and o for id have
  // already be computed (like already prefetched).
  key_status get_key_at_id(size_t id, key_type&key, const word* w, const offset_t* o) const {
    const word*     kvw      = w + o->key.woff;
    word            key_word = *kvw;
    word            kreprobe = 0;

    const key_offsets& key_o = o->key;
    if(key_word & key_o.lb_mask)
      return LBSET;
    const int implied_copy = std::min(lsize_, key_len_);
    int       bits_copied  = implied_copy;
    if(key_o.sb_mask1) {
      if((key_word & key_o.sb_mask1) == 0)
        return EMPTY;
      kreprobe = (key_word & key_o.mask1 & ~key_o.sb_mask1) >> key_o.boff;
      if(key_o.full_words) {
        // Copy full words. First one is special
        key_word = *(kvw + 1);
        if(offsets_.reprobe_len() < key_o.shift) {
          key.set_bits(bits_copied, key_o.shift - offsets_.reprobe_len(), kreprobe >> offsets_.reprobe_len());
          bits_copied += key_o.shift - offsets_.reprobe_len();
          kreprobe    &= offsets_.reprobe_mask();
          key.set_bits(bits_copied, wsize - 1, key_word & ~key_o.sb_mask1);
          bits_copied += wsize - 1;
        } else {
          int reprobe_left  = offsets_.reprobe_len() - key_o.shift;
          kreprobe         |= (key_word & (((word)1 << reprobe_left) - 1)) << key_o.shift;
          key.set_bits(bits_copied, wsize - 1 - reprobe_left, (key_word & ~key_o.sb_mask1) >> reprobe_left);
          bits_copied += wsize - 1 - reprobe_left;
        }
        int word_copied = 2;
        while(bits_copied + wsize - 1 <= key_len_) {
          key.set_bits(bits_copied, wsize - 1, *(kvw + word_copied++) & (fmask >> 1));
          bits_copied += wsize - 1;
        }
        if(key_o.sb_mask2)
          key.set_bits(bits_copied, key_len_ - bits_copied, *(kvw + word_copied) & key_o.mask2 & ~key_o.sb_mask2);
      } else if(key_o.sb_mask2) { // if(bits_copied + wsize - 1 < key_len
        // Two words but no full words
        key_word = *(kvw + 1) & key_o.mask2 & ~key_o.sb_mask2;
        if(offsets_.reprobe_len() < key_o.shift) {
          key.set_bits(bits_copied, key_o.shift - offsets_.reprobe_len(), kreprobe >> offsets_.reprobe_len());
          bits_copied += key_o.shift - offsets_.reprobe_len();
          kreprobe    &= offsets_.reprobe_mask();
          key.set_bits(bits_copied, key_len_ - bits_copied, key_word);
        } else {
          int reprobe_left  = offsets_.reprobe_len() - key_o.shift;
          kreprobe         |= (key_word & (((word)1 << reprobe_left) - 1)) << key_o.shift;
          key.set_bits(bits_copied, key_len_ - bits_copied, key_word >> reprobe_left);
        }
      }
    } else { // if(key_o.sb_mask1
      // Everything in 1 word
      key_word = (key_word & key_o.mask1) >> key_o.boff;
      if(key_word == 0)
        return EMPTY;
      kreprobe = key_word & offsets_.reprobe_mask();
      key.set_bits(bits_copied, raw_key_len_, key_word >> offsets_.reprobe_len());
    }
    // Compute missing oid so that the original key can be computed
    // back through the inverse matrix. Although the key may have a
    // length of key_len_, which may be less than lsize_, assume that
    // it still fit here as lsize_ is less than a word length. Need all lsize_.
    size_t oid = id; // Original id
    if(kreprobe > 1)
      oid -= reprobes_[kreprobe - 1];
    oid &= size_mask_;
    // Can use more bits than mer size. That's OK, will fix it later
    // when computing the actual mers by computing the product with
    // the inverse matrix.
    key.template set_bits<0>(0, lsize_, oid);

    return FILLED;
  }

  word get_val_at_id(const size_t id, const word* w, const offset_t* o, const bool reprobe = true,
                     const bool carry_bit = false) const {
    word            val = 0;
    if(val_len() == 0)
      return val;

    // First part of value
    const word* kvw = w + o->val.woff;
    val = ((*kvw) & o->val.mask1) >> o->val.boff;
    if(o->val.mask2)
      val |= ((*(kvw+1)) & o->val.mask2) << o->val.shift;

    // Do we want to get the large value
    bool do_reprobe = reprobe;
    if(carry_bit && do_reprobe) {
      do_reprobe   = do_reprobe && (val & 0x1);
      val        >>= 1;
    }
    if(!do_reprobe)
      return val;

    return resolve_val_rec((id + reprobes_[0]) & size_mask_, val, carry_bit);
  }

  word resolve_val_rec(const size_t id, word val, const bool carry_bit, const uint_t overflows = 0) const {
    uint_t          reprobe = 0;
    size_t          cid     = id;

    while(reprobe <= reprobe_limit_.val()) {
      const offset_t     *o, *lo;
      const word*         w    = offsets_.word_offset(cid, &o, &lo, data_);
      const word*         kw   = w + o->key.woff;
      word                nkey = *kw;
      const key_offsets&  lkey = lo->key;

      if(nkey & lkey.lb_mask) {
        // If the large bit is set, the size of the key (reprobe_len)
        // is guaranteed to have a length of at most 1 word.
        if(lkey.sb_mask1) {
          nkey  = (nkey & lkey.mask1 & ~lkey.sb_mask1) >> lkey.boff;
          nkey |= ((*(kw+1)) & lkey.mask2 & ~lkey.sb_mask2) << lkey.shift;
        } else {
          nkey = (nkey & lkey.mask1) >> lkey.boff;
        }
        if(nkey == reprobe) {
          const val_offsets& lval = lo->val;
          const word*        vw   = w + lval.woff;
          word               nval = ((*vw) & lval.mask1) >> lval.boff;
          if(lval.mask2)
            nval |= ((*(vw+1)) & lval.mask2) << lval.shift;

          bool do_reprobe = true;
          if(carry_bit) {
            do_reprobe   = nval & 0x1;
            nval       >>= 1;
          }

          nval <<= offsets_.val_len();
          nval <<= offsets_.lval_len() * overflows;
          val   += nval;

          if(!do_reprobe)
            return val;

          return resolve_val_rec((cid + reprobes_[0]) & size_mask_, val, carry_bit, overflows + 1);
        }
      } else if((nkey & o->key.mask1) == 0) {
        break;
      }

      cid  = (id + reprobes_[++reprobe]) & size_mask_;
    }

    return val;
  }

};

template<typename Key, typename word = uint64_t, typename atomic_t = ::atomic::gcc, typename mem_block_t = ::allocators::mmap>
class array :
    protected mem_block_t,
    public array_base<Key, word, atomic_t, array<Key, word, atomic_t, mem_block_t> >
{
  typedef array_base<Key, word, atomic_t, array<Key, word, atomic_t, mem_block_t> > super;
  friend class array_base<Key, word, atomic_t, array<Key, word, atomic_t, mem_block_t> >;

public:
  array(size_t size, // Size of hash. To be rounded up to a power of 2
        uint16_t key_len, // Size of key in bits
        uint16_t val_len, // Size of val in bits
        uint16_t reprobe_limit, // Maximum reprobe
        const size_t* reprobes = quadratic_reprobes) : // Reprobing policy
    mem_block_t(),
    super(size, key_len, val_len, reprobe_limit, RectangularBinaryMatrix(ceilLog2(size), key_len).randomize_pseudo_inverse(),
          reprobes)
  { }

protected:
  word* alloc_data(size_t s) {
    mem_block_t::realloc(s);
    return (word*)mem_block_t::get_ptr();
  }
};

struct ptr_info {
  void*  ptr_;
  size_t bytes_;
  ptr_info(void* ptr, size_t bytes) : ptr_(ptr), bytes_(bytes) { }
};
template<typename Key, typename word = uint64_t, typename atomic_t = ::atomic::gcc>
class array_raw :
    protected ptr_info,
    public array_base<Key, word, atomic_t, array_raw<Key, word, atomic_t> >
{
  typedef array_base<Key, word, atomic_t, array_raw<Key, word, atomic_t> > super;
  friend class array_base<Key, word, atomic_t, array_raw<Key, word, atomic_t> >;

public:
  array_raw(void* ptr,
            size_t bytes, // Memory available at ptr
            size_t size, // Size of hash in number of entries. To be rounded up to a power of 2
            uint16_t key_len, // Size of key in bits
            uint16_t val_len, // Size of val in bits
            uint16_t reprobe_limit, // Maximum reprobe
            RectangularBinaryMatrix m,
            const size_t* reprobes = quadratic_reprobes) : // Reprobing policy
    ptr_info(ptr, bytes),
    super(size, key_len, val_len, reprobe_limit, m, reprobes)
  { }

protected:
  word* alloc_data(size_t s) {
    assert(bytes_ == s);
    return (word*)ptr_;
  }
};

} } // namespace jellyfish { namespace large_hash_array

#endif /* __JELLYFISH_LARGE_HASH_ARRAY_HPP__ */