/usr/include/liggghts/probability_distribution.h is in libliggghts-dev 3.3.1+repack1-1ubuntu3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 | /* ----------------------------------------------------------------------
This is the
██╗ ██╗ ██████╗ ██████╗ ██████╗ ██╗ ██╗████████╗███████╗
██║ ██║██╔════╝ ██╔════╝ ██╔════╝ ██║ ██║╚══██╔══╝██╔════╝
██║ ██║██║ ███╗██║ ███╗██║ ███╗███████║ ██║ ███████╗
██║ ██║██║ ██║██║ ██║██║ ██║██╔══██║ ██║ ╚════██║
███████╗██║╚██████╔╝╚██████╔╝╚██████╔╝██║ ██║ ██║ ███████║
╚══════╝╚═╝ ╚═════╝ ╚═════╝ ╚═════╝ ╚═╝ ╚═╝ ╚═╝ ╚══════╝®
DEM simulation engine, released by
DCS Computing Gmbh, Linz, Austria
http://www.dcs-computing.com, office@dcs-computing.com
LIGGGHTS® is part of CFDEM®project:
http://www.liggghts.com | http://www.cfdem.com
Core developer and main author:
Christoph Kloss, christoph.kloss@dcs-computing.com
LIGGGHTS® is open-source, distributed under the terms of the GNU Public
License, version 2 or later. It is distributed in the hope that it will
be useful, but WITHOUT ANY WARRANTY; without even the implied warranty
of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. You should have
received a copy of the GNU General Public License along with LIGGGHTS®.
If not, see http://www.gnu.org/licenses . See also top-level README
and LICENSE files.
LIGGGHTS® and CFDEM® are registered trade marks of DCS Computing GmbH,
the producer of the LIGGGHTS® software and the CFDEM®coupling software
See http://www.cfdem.com/terms-trademark-policy for details.
-------------------------------------------------------------------------
Contributing author and copyright for this file:
(if not contributing author is listed, this file has been contributed
by the core developer)
Copyright 2012- DCS Computing GmbH, Linz
Copyright 2009-2012 JKU Linz
------------------------------------------------------------------------- */
#ifndef LMP_PROBABILITY_DISTRIBUTION_H
#define LMP_PROBABILITY_DISTRIBUTION_H
#include "math.h"
#include "stdio.h"
#include "string.h"
#include "random_park.h"
#include "error.h"
#include "pointers.h"
enum{RANDOM_CONSTANT,RANDOM_UNIFORM,RANDOM_GAUSSIAN,RANDOM_LOGNORMAL};
namespace LMP_PROBABILITY_NS {
class PDF
{
public:
PDF(LAMMPS_NS::Error *error)
{
mu_ = sigma_ = min_ = max_ = 0.;
h1_ = h2_ = 0.;
mass_shift_ = 0;
this->error = error;
}
~PDF(){}
int rand_style_;
double mu_,sigma_;
double min_,max_;
// helper
double h1_,h2_;
// if 1, pdf is shifted from number to mass based pdf
int mass_shift_;
LAMMPS_NS::Error *error;
inline int rand_style()
{ return rand_style_; }
inline void set_min_max(double min,double max)
{
min_ = min;
max_ = max;
}
inline void activate_mass_shift()
{ mass_shift_ = 1; }
template<int RAND_STYLE> void set_params(double)
{ error->all(FLERR,"Faulty usage of Probability::set_params"); }
template<int RAND_STYLE> void set_params(double,double)
{ error->all(FLERR,"Faulty usage of Probability::set_params"); }
};
inline double pdf_max(PDF *pdf)
{
return pdf->max_;
}
inline double pdf_min(PDF *pdf)
{
return pdf->min_;
}
template <int RAND_STYLE> inline double expectancy_value(PDF *pdf)
{
pdf->error->all(FLERR,"Faulty usage of Probability::expectancy");
return 0.;
}
template <int RAND_STYLE> inline double cubic_expectancy_value(PDF *pdf)
{
pdf->error->all(FLERR,"Faulty usage of Probability::volume_expectancy");
return 0.;
}
template <int RAND_STYLE> inline double rand_value(PDF *pdf,LAMMPS_NS::RanPark *rp)
{
pdf->error->all(FLERR,"Faulty usage of Probability::rand");
return 0.;
}
//------------------------------------------------------------------------------
// CONSTANT
//------------------------------------------------------------------------------
template<> inline void PDF::set_params<RANDOM_CONSTANT>(double val)
{
rand_style_ = RANDOM_CONSTANT;
mu_ = val;
set_min_max(mu_,mu_);
}
template<> inline double cubic_expectancy_value<RANDOM_CONSTANT>(PDF *pdf)
{
return pdf->mu_*pdf->mu_*pdf->mu_;
}
template<> inline double expectancy_value<RANDOM_CONSTANT>(PDF *pdf)
{
return pdf->mu_;
}
template<> inline double rand_value<RANDOM_CONSTANT>(PDF *pdf,LAMMPS_NS::RanPark *rp)
{
return pdf->mu_;
}
//------------------------------------------------------------------------------
// UNIFORM
//------------------------------------------------------------------------------
template<> inline void PDF::set_params<RANDOM_UNIFORM>(double min, double max)
{
rand_style_ = RANDOM_UNIFORM;
set_min_max(min,max);
h1_ = 2./(1./(min_*min_)-1./(max_*max_));
h2_ = h1_/(2.*min_*min_);
}
template<> inline double cubic_expectancy_value<RANDOM_UNIFORM>(PDF *pdf)
{
if(pdf->mass_shift_)
pdf->error->all(FLERR,"mass distribution not implemented for uniform");
return 0.25*(pdf->max_*pdf->max_*pdf->max_+
pdf->max_*pdf->max_*pdf->min_+
pdf->max_*pdf->min_*pdf->min_+
pdf->min_*pdf->min_*pdf->min_);
}
template<> inline double expectancy_value<RANDOM_UNIFORM>(PDF *pdf)
{
if(!pdf->mass_shift_)
return 0.5 * (pdf->min_ + pdf->max_);
else
return sqrt(pdf->h1_/(2.*(pdf->h2_-0.5)));
}
template<> inline double rand_value<RANDOM_UNIFORM>(PDF *pdf,LAMMPS_NS::RanPark *rp)
{
double rn = rp->uniform();
if(!pdf->mass_shift_)
return (pdf->min_) + rn * (pdf->max_ - pdf->min_);
else
return sqrt(pdf->h1_/(2.*(pdf->h2_-rn)));
}
//------------------------------------------------------------------------------
// GAUSSIAN
//------------------------------------------------------------------------------
template<> inline void PDF::set_params<RANDOM_GAUSSIAN>(double mu, double sigma)
{
rand_style_ = RANDOM_GAUSSIAN;
mu_ = mu;
sigma_ = sigma;
// set min-max to +- 3 sigma (99.73% of all values)
set_min_max(mu_-3.*sigma_, mu_+3.*sigma_);
if(min_ < 0.)
error->all(FLERR,"Probablity distribution: mu-3*sigma < 0, please increase mu or decrease sigma");
}
template<> inline double cubic_expectancy_value<RANDOM_GAUSSIAN>(PDF *pdf)
{
if(pdf->mass_shift_) pdf->error->all(FLERR,"mass distribution not implemented for gaussian");
return pdf->mu_*(pdf->mu_*pdf->mu_+3*pdf->sigma_*pdf->sigma_);
}
template<> inline double expectancy_value<RANDOM_GAUSSIAN>(PDF *pdf)
{
if(pdf->mass_shift_) pdf->error->all(FLERR,"mass distribution not implemented for gaussian");
return pdf->mu_;
}
template<> inline double rand_value<RANDOM_GAUSSIAN>(PDF *pdf,LAMMPS_NS::RanPark *rp)
{
if(pdf->mass_shift_) pdf->error->all(FLERR,"mass distribution not implemented for gaussian");
double value;
do
{
value = pdf->mu_ + rp->gaussian() * pdf->sigma_;
} while (value < pdf->min_ || value > pdf->max_);
return value;
}
//------------------------------------------------------------------------------
// LOGNORMAL
//------------------------------------------------------------------------------
template<> inline void PDF::set_params<RANDOM_LOGNORMAL>(double mu, double sigma)
{
error->all(FLERR,"lognormal distribution currently deactivated");
rand_style_ = RANDOM_LOGNORMAL;
mu_ = mu;
sigma_ = sigma;
// also here, take +- 3 sigma as min/max
// change in expectancy considered negligable
double min = exp(mu_ - 3. * sigma_);
double max = exp(mu_ + 3. * sigma_);
set_min_max(min, max);
if(min_ < 0.)
error->all(FLERR,"Probablity distribution: exp(mu-3*sigma) < 0, please increase mu or decrease sigma");
}
template<> inline double cubic_expectancy_value<RANDOM_LOGNORMAL>(PDF *pdf)
{
if(pdf->mass_shift_) pdf->error->all(FLERR,"mass distribution not implemented for lognormal");
return exp(3.*pdf->mu_+4.5*pdf->sigma_*pdf->sigma_);
}
template<> inline double expectancy_value<RANDOM_LOGNORMAL>(PDF *pdf)
{
if(pdf->mass_shift_) pdf->error->all(FLERR,"mass distribution not implemented for lognormal");
return exp(pdf->mu_ + 0.5 * pdf->sigma_ * pdf->sigma_);
}
template<> inline double rand_value<RANDOM_LOGNORMAL>(PDF *pdf,LAMMPS_NS::RanPark *rp)
{
if(pdf->mass_shift_) pdf->error->all(FLERR,"mass distribution not implemented for lognormal");
double value;
do
{
value = exp(pdf->mu_ + rp->gaussian() * pdf->sigma_);
} while (value < pdf->min_ || value > pdf->max_);
return value;
}
//------------------------------------------------------------------------------
// MASTER FUNCTIONS
//------------------------------------------------------------------------------
inline double expectancy(PDF *pdf)
{
if(pdf->rand_style_ == RANDOM_CONSTANT) return expectancy_value<RANDOM_CONSTANT>(pdf);
else if(pdf->rand_style_ == RANDOM_UNIFORM) return expectancy_value<RANDOM_UNIFORM>(pdf);
else if(pdf->rand_style_ == RANDOM_GAUSSIAN) return expectancy_value<RANDOM_GAUSSIAN>(pdf);
else if(pdf->rand_style_ == RANDOM_LOGNORMAL) return expectancy_value<RANDOM_LOGNORMAL>(pdf);
else pdf->error->all(FLERR,"Faulty implemantation in Probability::expectancy");
return 0.;
}
inline double cubic_expectancy(PDF *pdf)
{
if(pdf->rand_style_ == RANDOM_CONSTANT) return cubic_expectancy_value<RANDOM_CONSTANT>(pdf);
else if(pdf->rand_style_ == RANDOM_UNIFORM) return cubic_expectancy_value<RANDOM_UNIFORM>(pdf);
else if(pdf->rand_style_ == RANDOM_GAUSSIAN) return cubic_expectancy_value<RANDOM_GAUSSIAN>(pdf);
else if(pdf->rand_style_ == RANDOM_LOGNORMAL) return cubic_expectancy_value<RANDOM_LOGNORMAL>(pdf);
else pdf->error->all(FLERR,"Faulty implemantation in Probability::expectancy");
return 0.;
}
inline double rand(PDF *pdf,LAMMPS_NS::RanPark *rp)
{
if(pdf->rand_style_ == RANDOM_CONSTANT) return rand_value<RANDOM_CONSTANT>(pdf,rp);
else if(pdf->rand_style_ == RANDOM_UNIFORM) return rand_value<RANDOM_UNIFORM>(pdf,rp);
else if(pdf->rand_style_ == RANDOM_GAUSSIAN) return rand_value<RANDOM_GAUSSIAN>(pdf,rp);
else if(pdf->rand_style_ == RANDOM_LOGNORMAL) return rand_value<RANDOM_LOGNORMAL>(pdf,rp);
else pdf->error->all(FLERR,"Faulty implemantation in Probability::rand");
return 0.;
}
};
#endif
|